DOI QR코드

DOI QR Code

삼덕 Mo 광상에서 산출되는 백색운모 및 화학조성

White Mica and Chemical Composition of Samdeok Mo Deposit, Republic of Korea

  • 유봉철 (한국지질자원연구원 DMR융합연구단)
  • Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2019.07.14
  • 심사 : 2019.08.13
  • 발행 : 2019.09.30

초록

삼덕 Mo 광상 주변지질은 고생대 화전리층, 고운리층, 서창리층, 이원리층, 황강리층, 백악기 우백질 반상화강암 및 화강반암으로 구성된다. 이 광상은 서창리층 내에 발달된 NS 방향의 열극대를 따라 충진한 3개조의 석영맥으로 구성된 광상으로 석영맥의 맥폭은 0.05~0.3 m 정도로 팽축이 심하고 석영맥의 연장성은 약 400 m 정도이다. 석영맥은 괴상, 각력상 및 정동조직들이 관찰되며 모암변질로는 규화작용, 견운모화작용, 점토화작용 및 녹니석화작용 등이 관찰된다. 산출광물은 석영, 형석, 백색운모, 흑운모, 인회석, 모나자이트, 금홍석, 티탄철석, 휘수연석, 황동석, Fe-Mg-Mn 산화물 및 철 산화물 등이다. 이 광상의 백색운모는 석영맥과 모암에서 세립질에서 조립질로 산출되며 4가지 산출유형(I 유형: 석영, 휘수연석, 철 산화물 및 Fe-Mg-Mn 산화물과 함께 산출되는 것, II 유형: 석영, 철 산화물 및 Fe-Mg-Mn 산화물과 함께 산출되는 것, III 유형: 석영 및 흑운모와 함께 산출되는 것 및 IV 유형: 석영과 함께 산출되는 것)을 갖는다. 석영맥에서 산출되는 백색운모의 화학조성은$(K_{0.89-0.60}Na_{0.05-0.00}Ca_{0.01-0.00}Sr_{0.02-0.00})_{0.94-0.62}(Al_{1.54-1.12}Mg_{0.36-0.18}Fe_{0.26-0.09}Mn_{0.04-0.00}Ti_{0.02-0.00}Cr_{0.02-0.00}Zn_{0.01-0.00})_{1.91-1.72}(Si_{3.40-3.11}Al_{0.92-0.60})_{4.00}O_{10}(OH_{1.68-1.42}F_{0.58-0.32})_{2.00}$이나 I 유형의 백색운모는 나머지 유형의 백색운모보다 $SiO_2$ 및 MgO 함량은 낮고 FeO 함량은 높게 나타난다. 또한 이 광상의 백색운모의 화학조성 변화는 팬자이틱 또는 Tschermark 치환($(Al^{3+})^{VI}+(Al^{3+})^{IV}{\leftrightarrow}(Fe^{2+}$ 또는 $Mg^{2+})^{VI}+(Si^{4+})^{IV}$) 및 직접적인 $(Fe^{3+})^{VI}{\leftrightarrow}(Al^{3+})^{VI}$ 치환에 의해 일어났음을 알 수 있다.

The geology of the Samdeok Mo deposit consists of Paleozoic Hwajeonri formation, Kowoonri formation, Suchangri formation, Iwonri formation, Hwanggangri formation, Cretaceous, leucocratic porphyritic granite and granitic porphyry. This deposit consists of three quartz veins that filled NS oriented fractured zones in Suchangri formation. Quartz veins vary from 0.05 m to 0.3 m in thickness and extend to about 400 m in strike length. Quartz veins occur as massive, breccia, and cavity textures. Wallrock alteration has silicification, sericitization, argillitization and chloritization. The mineralogy of the quartz veins consists of quartz, fluorite, white mica, biotite, apatite, monazite, rutile, ilmenite, molybdenite, chalcopyrite, Fe-Mg-Mn oxide and Fe oxide. White mica from Samdeok Mo deposit occurs as fine or coarse grains in quartz vein and hostrock and has four mineral assemblages (I type: quartz, molybdenite, Fe oxide and Fe-Mg-Mn oxide, II type: quartz, Fe oxide and Fe-Mg-Mn oxide, III type: quartz and biotite, and IV type: quartz). The structural formular of white mica from quartz vein is $(K_{0.89-0.60}Na_{0.05-0.00}Ca_{0.01-0.00}Sr_{0.02-0.00})_{0.94-0.62}(Al_{1.54-1.12}Mg_{0.36-0.18}Fe_{0.26-0.09}Mn_{0.04-0.00}Ti_{0.02-0.00}Cr_{0.02-0.00}Zn_{0.01-0.00})_{1.91-1.72}(Si_{3.40-3.11}Al_{0.92-0.60})_{4.00}O_{10}(OH_{1.68-1.42}F_{0.58-0.32})_{2.00}$, but white mica of I type has higher FeO content, and lower $SiO_2$ and MgO contents than white micas of other types. Also, compositional variations in white mica from the Samdeok Mo deposit are caused by phengitic or Tschermark substitution ($(Al^{3+})^{VI}+(Al^{3+})^{IV}{\leftrightarrow}(Fe^{2+}{\text{ or }}Mg^{2+})^{VI}+(Si^{4+})^{IV}$) and direct $(Fe^{3+})^{VI}{\leftrightarrow}(Al^{3+})^{VI}$ substitution.

키워드

참고문헌

  1. Ahn, S.Y. and Shin, D.B. (2017) Mineralogy and genetic environments of the Seongdo Pb-Zn deposit, Goesan. Economic and Environmental Geology, 50, 325-340. https://doi.org/10.9719/EEG.2017.50.5.325
  2. Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H.A., and Yavuz, R. (2008) Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrology, 94, 107-122. https://doi.org/10.1007/s00710-008-0006-5
  3. Cho, H.J., Seo, J.H., Lee, T.H., Yoo, B.C., Lee, H.W., Lee, K.G., Lim, S.B., and Hwang, J.W. (2018) Hydrothermal evolution for the Inseong Au-Ag deposit in the Hwanggangri metallogenic region, Korea. Journal of the Mineralogical Society of Korea, 31, 307-323. https://doi.org/10.9727/jmsk.2018.31.4.307
  4. Cohen, J.F. (2011) Compositional variations in hydrothermal white mica and chlorite from wall-rock alteration at the Ann-Mason porphyry copper deposit, Nevada. Master Thesis, Oregon State University, Oregon, USA, 121p.
  5. Deer, W.A., Howie, R.A., and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals. Longman Scientific & Technical, 696p.
  6. Deer, W.A., Howie, R.A., and Zussman, J. (2003) Rock-Forming Minerals. Sheet Silicates: Micas (3rd ed), 2, 308p.
  7. Deer, W.A., Howie, R.A., and Zussman, J. (2013) An Introduction to the Rock-Forming Minerals. 3rd edition. Stevenage, Berforts Information Press, 498p.
  8. Dehnavi, A.S., McFarlane, C.R.M., Lentz, D.R., McClenaghan, S.H., and Walker, J.A. (2019) Chlorite-white mica pairs' composition as a micro-chemical guide to fingerprint massive sulfide deposits of the Bathurst mining camp, Canada. Minerals, 9, 125. https://doi.org/10.3390/min9020125
  9. Gaillard, N., Williams-Jones, A.E., Clark, J.R., Lypaczewski, P., Salvi, S., Perrouty, S., Piette-Lauziere, N., Guilmette, C., and Linnen, R.L. (2018) Mica composition as a vector to gold mineralization: Deciphering hydrothermal and metamorphic effects in the Malartic district, Quebec. Ore Geology Reviews, 95, 789-820. https://doi.org/10.1016/j.oregeorev.2018.02.009
  10. Jimenez, T.R.A. (2011) Variation in hydrothermal muscovite and chlorite composition in the Highland valley porphyry Cu-Mo district, British Columbia, Canada. Master Thesis, University of British Columbia, Vancouver, Canada, 233p.
  11. Korea Mining Promotion Corporation (1979) Drilling survey report of ore deposits, 4, 839-923.
  12. Lee, C.H. and Kim, J.H. (1972) Explanatory text of the geological map of Goesan sheet(scale 1:50,000). Geological Survey of Korea, 24p.
  13. Lee, K.H., Choi, G., Kim, D.H., You, O.J., Lee, H.B., and Kim, J.H. (2005) Mineral Resources Encyclopedia. Korea Institute of Geoscience and Mineral Resources, 568p.
  14. Lee, M.S. and Park, B.S. (1965) Explanatory text of the geological map of Hwanggang-ni sheet(scale 1:50,000). Geological Survey of Korea, 43p.
  15. Lim, E.D., Yoo, B.C., and Shin, D.B. (2016) Skarnization and Fe mineralization at the western orebody in the Manjang deposit, Goesan. Journal of the Mineralogical Society of Korea, 29, 141-153. https://doi.org/10.9727/jmsk.2016.29.3.141
  16. Park, N.Y. (1962) Samdeok field report. Geological Survey of Korea, 14p.
  17. Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenhein, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J., Sassi, F.P., Takeda, H., Weiss, Z., and Wones, D.R. (1999) Nomenclature of the micas. Mineralogical Magazine, 63, 267-279. https://doi.org/10.1180/minmag.1999.063.2.13
  18. Tappert, M.C., Rivard, B., Giles, D., Tappert, R., and Mauger, A. (2013) The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53, 26-38. https://doi.org/10.1016/j.oregeorev.2012.12.006
  19. Tischendorf, G., Gottesmann, B., Forster, H.J., and Trumbull, R.B. (1997) On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809-834. https://doi.org/10.1180/minmag.1997.061.409.05
  20. Uribe-Mogollon, C. and Maher, K. (2018) White mica geochemistry of the copper cliff porphyry Cu deposit: Insights from a vectoring tool applied to exploration. Economic Geology, 113, 1269-1295. https://doi.org/10.5382/econgeo.2018.4591
  21. Wallace, C.J. (2016) Latite dikes, phyllic alteration and geochemical variations of micas at the copper flat hydrothermal system, Hillsboro, Sierra county, New Mexico, USA. Master Thesis, New Mexico Institute of Mining and Technology, New Mexico, USA, 107p.
  22. Wikipedia https://en.wikipedia.org/wiki/Mica.

피인용 문헌

  1. 삼광 금-은 광상의 엽리상 석영맥에서 산출되는 백색운모와 철백운석의 산상 및 화학조성 vol.33, pp.1, 2019, https://doi.org/10.22807/kjmp.2020.33.1.53
  2. 운산 금 광상의 엽리상 석영맥에서 산출되는 백색운모와 녹니석의 산상 및 화학조성 vol.34, pp.1, 2021, https://doi.org/10.22807/kjmp.2021.34.1.1