DOI QR코드

DOI QR Code

버네사이트 합성 시 에이징 시간에 따른 중간생성물 페이크네타이트 상전이 및 표면 형태학적 특성

Phase Transition and Surface Morphological Characteristics of Intermediate Product Feitknechtite According to Aging Time during the Synthesis of Birnessite

  • 민소영 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부)
  • Min, Soyoung (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University)
  • 투고 : 2019.09.05
  • 심사 : 2019.09.25
  • 발행 : 2019.09.30

초록

버네사이트(birnessite, $7{\AA}$ manganate, ${\delta}-MnO_2$)는 망간단괴를 구성하는 주요한 광물이다. 버네사이트는 또한 이온교환제와 배터리 재충전 물질로서 사용될 수 있기 때문에 다양한 합성법이 연구되고 있다. 그러나 버네사이트는 화학양론적으로 성립하지 않는 화학조성을 가지기 때문에 합성 시 단일 상을 수득하기에는 어려움이 존재한다. 버네사이트 합성과정 중에서 중간생성물로 페이크네타이트(${\beta}-MnOOH$)가 나타나는데, 본 연구에서는 이 중간생성물이 버네사이트로 상전이 하는 특성 차이를 XRD와 SEM 결과를 통해 비교하였다. 이번 연구에서는 기존에 연구된 합성 방법 중에서 산화-환원(redox)반응을 기작으로 하는 Feng et al. (2004)와 Luo et al. (1998) 두 방법을 이용하였다. Feng et al. (2004) 방법으로는 $27^{\circ}C$에서 60일, Luo et al. (1998) 방법으로는 $60^{\circ}C$에서 3일 에이징 한 시료에서 단일 상의 버네사이트를 수득할 수 있는 것으로 나타났다. 이러한 두 시료의 상전이 특성은 $Mg^{2+}$ 도핑여부에 따라 차이가 나타나는 것으로 판단되며 $Mg^{2+}$ 도핑된 Luo et al. (1998) 방법으로 합성된 버네사이트의 경우 페이크네타이트 상전이 속도가 느리게 나타났고 고온에서 거의 단일 상 버네사이트를 확인할 수 있었으며 결정 표면 및 형태 또한 두 방법 간의 차이를 확인하였다.

Birnessite (birnessite, $7{\AA}$ manganate, ${\delta}-MnO_2$) is a major mineral comprising manganese nodule. Various synthetic methods have been studied and evaluated because it can be used as an ion exchange agent and a battery recharging material. However, it is difficult to obtain a single birnessite phase because it does not have a stoichiometric chemical composition. Feitknechtite (${\beta}-MnOOH$) is formed as an intermediate product during birnessite synthesis and in this study, the transition of this phase to birnessite was compared by using XRD and SEM. Two different methods, Feng et al. (2004) and Luo et al. (1998), based on redox reaction were used. It was possible to obtain the impurity-free birnessite for the sample aged 60 days at $27^{\circ}C$ by Feng et al. (2004) method and 3 days at $60^{\circ}C$ by Luo et al. (1998) method. The phase transition rate of the feitknechtite phase was slower in the case of $Mg^{2+}$ doped birnessite which was synthesized by Luo et al. (1998) method, and almost single phase almost single phase birnessite was identified at high temperature. Crystal surface and morphology also confirmed the difference between the samples synthesized by two methods.

키워드

참고문헌

  1. Aronson, B.J., Kinser, A.K., Passerini, S., Smyrl, W.H., and Stein A. (1999) Synthesis, characterization, and electrochemical properties of magnesium birnessite and zinc chalcophanite prepared by a low-temperature route. Chemistry of Materials, 11, 949-957. https://doi.org/10.1021/cm9805828
  2. Brock, S.L., Duan, N., Tian, Z.R., Giraldo, O., Zhou, H., and Suib, S.L. (1998) A review of porous manganese oxide materials. Chemistry of Materials, 10, 2619-2628. https://doi.org/10.1021/cm980227h
  3. Ching, S., Petrovay, D.J., Jorgensen, M.L., and Suib, S.L. (1997) Sol-gel synthesis of layered birnesstie-type manganese oxides. Inorganic Chemistry, 36, 883-890. https://doi.org/10.1021/ic961088d
  4. Drits, V.A., Silvester, E., Gorshkov,, A.I., and Manceau, A. (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction and selected-area electron diffraction. American Mineralogist, 82, 946-961. https://doi.org/10.2138/am-1997-9-1012
  5. Feng, X., Tan, W., Liu, F., Wang, J., and Ruan, H. (2004) Synthesis of todorokite at atmospheric pressure. Chemistry of Materials, 16, 4330-4336. https://doi.org/10.1021/cm0499545
  6. Feng, X., Zhai, L., Tan, W., Liu, F., and He, J. (2007) Adsorption and redox reations of heavy metals on synthesized Mn oxide minerals. Environment Pollution, 147, 366-373. https://doi.org/10.1016/j.envpol.2006.05.028
  7. Kuma, K., Usui, A., Paplawsky, W., Gedulin, B., and Arrhenius, G. (1994) Crystal structures of synthetic 7 ${\AA}$ and 10 ${\AA}$ manganates substituted by monoand divalent cations. Mineralogical Magazine, 58, 425-447. https://doi.org/10.1180/minmag.1994.058.392.08
  8. Le Goff, P., Baffier, N., Bach, S., and Pereira-Ramos, J.P. (1996) Synthesis, ion exchange and electrochemical properties of lamellar phyllomanganates of the cirnessite group. Materials Research Bulletin, 31, 63-75. https://doi.org/10.1016/0025-5408(95)00170-0
  9. Luo, J. and Suib, S.L. (1997) Preparative parameters, magnesium effects, and anion effects in the crystallization of birnessite. The Journal of Physical Chemistry B, 101, 10403-10413. https://doi.org/10.1021/jp9720449
  10. Luo, J., Huang, A., Park, S.H., Suib, S.L., and O'Young, C.L. (1998) Crystallization of sodium-birnessite and accompanied phase transformation. Chemistry of Materials, 10, 1561-1568. https://doi.org/10.1021/cm970745c
  11. Oscarson, D.W., Huang, P.M., and Liaw, W.K. (1981) Role of manganese in the oxidation of arsenite by freshwater lake sediments. Clays and Clay Minerals, 29, 219-225. https://doi.org/10.1346/CCMN.1981.0290308
  12. Post, J.E. and Veblen, D.R. (1990) Crystal structure determinations of synthetic sodium, magesium, and potassium birnessite using TEM and the Rietveld method. American Mineralogist, 75, 477-489.
  13. Post. J.E. (1999) Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of United States of America, 96, 3447-3454. https://doi.org/10.1073/pnas.96.7.3447
  14. Shen, Y.F., Zerger, R.P., Deguzman, R.N., Suib, S.L., McCurdy, L., Potter, D.I., and O'Young, C.L. (1993) Manganese oxide octahedral molecular sieves: Preparation, characterization, and Applications. Science, 260, 511-515. https://doi.org/10.1126/science.260.5107.511
  15. Silvester, E., Manceau, A., Drits, V.A. (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite.: II. Results form chemical studies and EXAFS spectroscopy. American Mineralogist, 82, 962-978. https://doi.org/10.2138/am-1997-9-1013