DOI QR코드

DOI QR Code

Fabrication and Evaluation of Polyelectrolyte Complexes of Dextran Derivatives for Drug Coating of Coronary Stents

  • Jang, Eun-Jae (Biopharmaceutical Research Center) ;
  • Lee, So-Youn (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare) ;
  • Bae, In-Ho (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare) ;
  • Park, Dae Sung (The Cardiovascular Convergence Research Center of Chonnam National University, Hospital Designated by Ministry of Health and Welfare) ;
  • Jeong, Myung Ho (Department of Cardiology, Chonnam National University Hospital) ;
  • Park, Jun-Kyu (CGBio Co. Ltd)
  • Received : 2019.07.19
  • Accepted : 2019.08.20
  • Published : 2019.10.10

Abstract

The aim of this study was to fabricate a dextran polyelectrolyte multi-layer on a bare metal stent (BMS) and to evaluate bio-physical properties of the layer. Diethylaminoethyl-dextran (DEAE-D) as a polycation and dextran sulfate (DS) as a polyanion were successively coated on the bare metal stent by a well-known layer-by-layer procedure. The morphology of the stent surface and its cell adhesion were studied after each coating step by scanning electron microscopy. The stent showed more blotched and slightly rougher morphology after dextran-DS coating. The contact angle of the DEAE-DS group ($39.5{\pm}0.15^{\circ}$) was significantly higher than that of the BMS group ($45.16{\pm}0.08^{\circ}$), indicating the improvement of hydrophilic. The SMC proliferation inhibition in the DEAE-DS-coated stent group ($20.9{\pm}0.04%$) was stronger than that in the control group ($21.7{\pm}0.10%$ in DS-coated group only). The DEAE-DS coating is desired for stent coating materials with biocompatibility and anti-restenosis effect.

Keywords

References

  1. S. Tsimikas, Drug-eluting stents and late adverse clinical outcomes lessons learned, lessons awaited, J. Am. Coll. Cardiol., 47, 2112-2115 (2006). https://doi.org/10.1016/j.jacc.2006.03.019
  2. G. W. Jeong, T. H. Kim, J. W. Nah, and J. K. Park, The developing trend in bioresorbable stent for trement of coronary artery disease, Appl. Chem. Eng., 29, 5, 497-502. https://doi.org/10.14478/ace.2018.1085
  3. F. G. Welt and C. Rogers, Inflammation and restenosis in the stent era, Arterioscler. Thromb. Vasc. Biol., 22, 1769-1776 (2002). https://doi.org/10.1161/01.ATV.0000037100.44766.5B
  4. C. Spaulding, J. Daemen, E. Boersma, D. E. Cutlip, and P. W. Serruys, A pooled analysis of data comparing sirolimus-eluting stents with bare-metal stents, N. Engl. J. Med., 356, 989-997 (2007). https://doi.org/10.1056/NEJMoa066633
  5. S. Meng, Z. Liu, L. Shen, Z. Guo, L. L. Chou, and W. Zhong, The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system, Biomaterials, 30, 2276-2283 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.075
  6. E. P. McFadden, E. Stabile, E. Regar, E. Cheneau, A. T. Ong, and T. Kinnaird, Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy, Lancet, 364, 1519-1521 (2004). https://doi.org/10.1016/S0140-6736(04)17275-9
  7. C. Guan, B. Xu, S. Qiao, L. Qin, Y. Li, Z. Li, Y. Guo, Z. Sun, L. Song, and R. Gao, Comparison of two biodegradable-polymer-based sirolimus-eluting stents with varying elution and absorption kinetics in patients with acute myocardial infarction: A subgroup analysis of the PANDA III trial, Catheter. Cardiovasc. Interv., 89, 520-527 (2017). https://doi.org/10.1002/ccd.26918
  8. Y. Han, B. Xu, K. Xu, C. Guan, Q. Jing, Q. Zheng, X. Li, X. Zhao, H. Wang, X. Zhao, X. Li, P. Yu, H. Zang, Z. Wang, X. Cao, J. Zhang, W. Pang, J. Li, Y. Yang, and G. D. Dangas, Six versus 12 months of dual antiplatelet therapy after implantation of biodegradable polymer sirolimus-eluting stent: Randomized substudy of the I-LOVE-IT 2 trial, Circ. Cardiovasc. Interv., 9, e003145 (2016).
  9. I. H. Bae, M. H. Jeong, J. H. Kim, Y. H. Park, K. S. Lim, D. S. Park, J. W. Shim, Y. Ahn, Y. J. Hong, and D. S. Sim, The control of drug release and vascular endothelialization after hyaluronic acid-coated paclitaxel multi-layer coating stent implantation in porcine coronary restenosis model, Korean Circ J., 47, 123-131 (2017). https://doi.org/10.4070/kcj.2016.0203
  10. A. Sethi, A. Bahekar, R. Bhuriya, A. Bajaj, P. P. Singh, R. Arora, and S. Khosla, Zotarolimus-eluting stent versus sirolimus-eluting and paclitaxel-eluting stents for percutaneous coronary intervention: A meta-analysis of randomized trials, Arch. Cardiovasc. Dis., 105, 544-556 (2012). https://doi.org/10.1016/j.acvd.2012.01.014
  11. J. Aoki, Complications of polymers on drug-eluting stents: Looking toward polymer-free drug-eluting stents, Intern. Med., 54, 549-550 (2015). https://doi.org/10.2169/internalmedicine.54.3855
  12. S. K. Yazdani, M. Vorpahl, M. Nakano, S. H. Su, F. D. Kolodgie, and R. Virmani, In vitro and in vivo characterisation of biodegradable polymer-based drug-eluting stent, EuroIntervention, 7, 835-843 (2011). https://doi.org/10.4244/EIJV7I7A131
  13. B. Thierry, F. M. Winnik, Y. Merhi, J. Silver, and M. Tabrizian, Bioactive coatings of endovascular stents based on polyelectrolyte multilayers, Biomacromolecules, 4, 1564-1571 (2003). https://doi.org/10.1021/bm0341834
  14. G. Sun, Y. I. Shen, S. Kusuma, K. Fox-Talbot, C. J. Steenbergen, and S. Gerecht, Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors, Biomaterials, 32, 95-106 (2011). https://doi.org/10.1016/j.biomaterials.2010.08.091
  15. S. R. Van Tomme and W. E. Hennink, Biodegradable dextran hydrogels for protein delivery applications, Expert Rev. Med. Devices, 4, 147-164 (2007). https://doi.org/10.1586/17434440.4.2.147
  16. W. C. Lin, D. G. Yu, and M. C. Yang, Blood compatibility of thermoplastic polyurethane membrane immobilized withwater-soluble chitosan/dextran sulfate, Colloids Surf. B, 44, 82-92 (2005). https://doi.org/10.1016/j.colsurfb.2005.05.015
  17. A. J. Chung and M. F. Rubner, Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films, Langmuir, 18, 1176-1183 (2005). https://doi.org/10.1021/la010873m
  18. T. Groth and A. Lendlein, Layer-by-layer deposition of polyelectrolytes: A versatile tool for the in vivo repair of blood vessels, Angew. Chem., 43, 926-928 (2004). https://doi.org/10.1002/anie.200301708
  19. J. Zhang, B. Senger, D. Vautier, C. Picart, P. Schaaf, J. C. Voegel, and P. Lavalle, Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid, Biomaterials, 26, 3353-3361 (2005). https://doi.org/10.1016/j.biomaterials.2004.08.019
  20. I. H. Bae, K. S. Lim, J. K. Park, D. S. Park, S. Y. Lee, and E. J. Jang, Mechanical behavior and in vivo properties of newly designed bare metal stent for enhanced flexibility, J. Ind. Eng. Chem., 21, 1295-1300 (2015). https://doi.org/10.1016/j.jiec.2014.05.045
  21. K. S. Lim, I. H. Bae, J. H. Kim, D. S. Park, J. M. Kim, and J. H. Kim, Mechanical and histopathological comparison between commercialized and newly designed coronary bare metal stents in a porcine coronary restenosis model, Chonnam Med. J., 49, 7-13 (2013). https://doi.org/10.4068/cmj.2013.49.1.7
  22. P. Buszman, S. Trznadel, A. Zurakowski, K. Milewski, L. Kinasz, and M. Krol, Prospective registry evaluating safety and efficacy of cobalt-chromium stent implantation in patients with de novo coronary lesions, Kardiologia Polska, 65, 1041-1046 (2007).
  23. S. Benni, T. Avramoglou, H. Hlawaty, and Y. Mora1, Dynamic contact angle analysis of protein adsorption on polysaccharide multilayer's films for biomaterial reendothelialization, Biomed Res. Int., 10, 679031 (2014).
  24. F. Ganji and E. Vasheghani-Farahani, Hydrogels in controlled drug delivery systems, Iran. Polym. J., 18, 63-88 (2009).
  25. G. Costamagna, M. Mutignani, G. Rotondano, L. Cipolletta, L. Ghezzo, A. Foco, and A. Zambelli, Hydrophilic hydromer-coated polyurethane stents versus uncoated stents in malignant biliary obstruction: A randomized trial, Gastroint. Endosc., 51, 8-11 (2000). https://doi.org/10.1016/S0016-5107(00)70378-6
  26. J. W. Leung, Y. Liu, S. Cheung, R. C. Chan, J. F. Inciardi, and A. F. Cheng, Effect of antibiotic-loaded hydrophilic stent in the prevention of bacterial adherence: A study of the charge, discharge, and recharge concept using ciprofloxacin, Gastrointest Endosc., 53, 431-437 (2001). https://doi.org/10.1067/mge.2001.113089
  27. F. Unger, U. Westedt, P. Hanefeld, R. Wombacher, S. Zimmermann, A. Greiner, M. Ausborn, and T. Kissel, Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings?, J. Control. Release, 117, 312-321 (2007). https://doi.org/10.1016/j.jconrel.2006.11.003
  28. S. Y. Lee, I. H. Bae, D. S. Park, E. J. Jang, J. W. Shim, K. S. Lim, J. K. Park, D. S. Sim, and M. H. Jeong, Comparison of dextran-based sirolimus-eluting stents and PLA-based sirolimus-eluting stents in vitro and in vivo, J. Biomed. Mater. Res. A, 105(1), 1002 (2017). https://doi.org/10.1002/jbm.b.33634