DOI QR코드

DOI QR Code

아민기로 관능화된 마그네슘-층상규산염을 이용한 섬유유연제 제조

Preparation of Fabric Softener Product by using Amine-functionalized Magnesium-phyllosilicates

  • 김성열 ((주)럭키산업 연구개발팀) ;
  • 최유성 ((주)럭키산업 연구개발팀)
  • Kim, Seong Yeol (Lucky Research and Development Center (LRDC), Lucky Industry Co., Ltd.) ;
  • Choi, Yoo-Sung (Lucky Research and Development Center (LRDC), Lucky Industry Co., Ltd.)
  • 투고 : 2019.07.25
  • 심사 : 2019.08.19
  • 발행 : 2019.10.10

초록

본 연구에서는 (3-aminopropyl)triethoxysilane을 사용하여 표면을 아민기로 관능화함과 동시에 팔면체와 사면체 구조를 가지는 마그네슘-층상규산염(AF-MgP)을 합성하였다. FT-IR과 XRD 분석을 통해 AF-MgP가 성공적으로 합성되었음과, 입자 표면의 아민기 및 1 : 2 비율의 팔면체와 사면체 구조를 확인하였다. HR-SEM와 EDX 분석을 통해 면섬유 표면에 AF-MgP가 고루 흡착되어 섬유를 코팅하고 있음을 확인하였다. KS 규격에 따른 섬유의 항균력 시험 결과 AF-MgP 입자가 코팅된 면섬유는 피부 상재균에 대해 매우 우수한 항균 활성을 나타내는 것을 확인하였다. 이상의 결과들은 AF-MgP가 섬유에 항균성을 부여해주는 기능성 나노 소재로서 적용될 뿐만 아니라, 화장품이나 의료 소재 분야에서 응용이 가능함을 시사한다.

In this study, we synthesized amine-functionalized magnesium-phyllosilicates (AF-MgP) with an octahedral and tetrahedral structure using (3-aminopropyl)triethoxysilane. The synthesis of AF-MgP, surface functionalization of amine and 1 : 2 ratio of the octahedral and tetrahedral structure were confirmed by FT-IR and XRD analysis. In addition, it was confirmed that AF-MgP was absorbed evenly on the surface of cotton fibers and coated on the cotton fibers from HR-SEM and EDX analysis. The antimicrobial activity test of cotton fibers according to KS confirmed that cotton fibers coated with AF-MgP particles show an enhanced antimicrobial activity against cutaneous microorganisms. Our results suggest that AF-MgP is not only applied as a functional nanomaterial that gives the cotton fiber antimicrobiality, but also can be used in the field of cosmetic and biomedical materials.

키워드

참고문헌

  1. R. Dastjerdi and M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties, Colloids Surf. B, 79, 5-18 (2010). https://doi.org/10.1016/j.colsurfb.2010.03.029
  2. E. A. Grice and J. A. Segre, The skin microbiome, Nat. Rev. Microbiol., 9, 244-253 (2011). https://doi.org/10.1038/nrmicro2537
  3. J. Lin, X. Chen, C. Chen, J. Hu, C. Zhou, X. Cai, W. Wang, C. Zheng, P. Zhang, J. Cheng, Z. Guo, and H. Liu, Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers, ACS Appl. Mater. Interfaces, 10, 6124-6136 (2018). https://doi.org/10.1021/acsami.7b16235
  4. T. Mao, Y. Wei, C. Zheng, W. Cheng, Z. Zhang, Y. Zhu, R. Wang, and Z. Zeng, Antibacterial cotton fabrics coated by biodegradable cationic silicone softeners, J. Surfactants Deterg., DOI:10.1002/jsde.12316 (2019).
  5. Y. H. Lee, S. G. Lee, E. K. Hwang, Y. M. Baek, S. Cho, J. S. Kim, and H. D. Kim, Deodorizing performance and antibacterial properties of fabric treated with pomegranate and gallnut extracts compared with properties of commercial deodorizing and antibacterial agents, J. Text. Sci. Eng., 53. 45-54 (2016). https://doi.org/10.12772/TSE.2016.53.045
  6. M. Wu, B. Ma, T. Pan, S. Chen, and J. Sun, Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties, Adv. Func. Mater., 26, 569-576 (2016). https://doi.org/10.1002/adfm.201504197
  7. T. I. Shaheen, M. E. El-Naggar, A. M. Abdelgawad, and A. Hebeish, Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics, Int. J. Biol. Macromol., 83, 426-432 (2016). https://doi.org/10.1016/j.ijbiomac.2015.11.003
  8. M. E. El-Naggar, T. I. Shaheen, S. Zaghloul, M. H. El-Rafie, and A. Hebeish, Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics, Ind. Eng. Chem. Res., 55, 2661-2668 (2016). https://doi.org/10.1021/acs.iecr.5b04315
  9. J. H. A. Rosalind and C. Anderson, Respiratory toxicity of fabric softener emissions, J. Toxicol. Environ. Health, 60, 121-136 (2000). https://doi.org/10.1080/009841000156538
  10. E. K. Oikonomou, N. Christov, G. Cristobal, C. Bourgaux, L. Heux, I. Boucenna, and J. F. Berret, Design of eco-friendly fabric softeners: Structure, rheology and interaction with cellulose nanocrystals, J. Colloid Interface Sci., 525, 206-215 (2018). https://doi.org/10.1016/j.jcis.2018.04.081
  11. N. Calero, J. Santos, M. Barjano, and J. Munos, Shear-induced structural transitions in a model fabric softener containing an esterquat surfactant, J. Surfactants Deterg., 19, 609-617 (2016). https://doi.org/10.1007/s11743-016-1808-9
  12. V. Ravichandran, S. Vasanthi, S. Shalini, S. A. A. Shah, and R. Harish, Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity, Mater. Lett., 180, 264-267 (2016). https://doi.org/10.1016/j.matlet.2016.05.172
  13. J. Bonilla and P. J. A. Sobral, Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts, Food Biosci., 16, 17-25 (2016). https://doi.org/10.1016/j.fbio.2016.07.003
  14. L. Mpala, G. Chikowe, and I. E. Cock, Piper novae-hollandiae miq. leaf extracts lack antibacterial activity and are non-toxic in vitro, Pharmacogn. Commun., 9, 75-79 (2019). https://doi.org/10.5530/pc.2019.2.14
  15. P. Velmurugan, J. I. Kim, K. Kim, J. H. Park, K. J. Lee, W. S. Chang, Y. J. Park, M. Cho, and B. T. Oh, Extraction of natural colorant from purple sweet potato and dyeing of fabrics with silver nanoparticles for augmented antibacterial activity against skin pathogens, J. Photochem. Photobiol., 173, 571-579 (2017). https://doi.org/10.1016/j.jphotobiol.2017.07.001
  16. S. M. Ghoreishian, L. Maleknia, H. Mirzapour, and M. Norouzi, Antibacterial properties and color fastness of silk fabric dyed with turmeric extract, Fiber. Polym., 14, 201-207 (2013). https://doi.org/10.1007/s12221-013-0201-9
  17. G. Ke, W. Yu, and W. Xu, Color evaluation of wool fabric dyed with Rhizoma coptidis extract, J. Appl. Polym. Sci., 101, 3376-3380 (2006). https://doi.org/10.1002/app.24033
  18. Y. Lee, Y. Choi, M. Choi, H. Yang, K. Liu, and H. Shin, Dual-end functionalized magnesium organo-(phyllo)silicates via co-condensation and its antimicrobial activity, Appl. Clay Sci., 83, 474-485 (2013). https://doi.org/10.1016/j.clay.2012.10.007
  19. S. Y. Kim and Y. S. Choi, Preparation of magnesium-based two-dimensional phyllosilicate materials and simultaneous antioxidant drug intercalation, Colloids Surf. A, 569, 164-170 (2019). https://doi.org/10.1016/j.colsurfa.2019.02.065
  20. Z. Bian and S. Kawi, Preparation, characterization and catalytic application of phyllosilicate: A review, Catal. Today, DOI:10.1016/j.cattod.2018.12.030.
  21. K. K. R. Datta, A. Achari, and M. Eswaramoorthy, Aminoclay: A functional layered material with multifaceted applications, J. Mater. Chem. A, 1, 6707-6718 (2013). https://doi.org/10.1039/c3ta00100h
  22. H. K. Han, Y. C. Lee, M. Y. Lee, A. J. Patil, and H. J. Shin, Magnesium and calcium organophyllosilicates: Synthesis and in vitro cytotoxicity study, ACS Appl. Mater., 3, 2564-2572 (2011). https://doi.org/10.1021/am200406k
  23. G. Chandrasekaran, H. K. Han, G. J. Kim, and H. J. Shin, Antimicrobial activity of delaminated aminopropyl functionalized magnesium phyllosilicates, Appl. Clay Sci., 53, 729-736 (2011). https://doi.org/10.1016/j.clay.2011.07.001
  24. S. Y. Kim and Y. S. Choi, Study on synthesis of pine leaf extract intercalated Mg-phyllosilicate sandwich nanoparticles and antimicrobial activity against cutaneous microorganisms, Appl. Chem. Eng., 30, 254-259 (2019). https://doi.org/10.14478/ACE.2019.1011
  25. S. Y. Kim and Y. S. Choi, Preparation of natural chemicals intercalated aminoclay via one-pot synthesis and its antimicrobial property, Appl. Chem. Eng., 28, 495-500 (2017). https://doi.org/10.14478/ace.2017.1034
  26. S. Gordon and Y. L. Hsieh, Cotton: Science and Technology, 3-5, Woodhead Publishing, Cambridge, UK (2006).
  27. K. Kulthong, S. Srisung, K. Boonpavanitchakul, W. Kangwansupamonkon, and R. Maniratanachote, Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat, Part. Fibre Toxicol., 7(8) (2010).