DOI QR코드

DOI QR Code

Optimization on the Stability of Coconut Oil in Water Emulsion Using Response Surface Methodology

반응표면분석법을 이용한 Coconut Oil 원료 O/W 유화액의 유화안정성 최적화

  • Received : 2019.07.15
  • Accepted : 2019.07.29
  • Published : 2019.10.10

Abstract

In this study, an optimization for the emulsification process with coconut oil and sugar ester was performed in conjunction with the central composite design (CCD) model of response surface methodology (RSM). Response values for the CCD model were the viscosity of the emulsion, mean droplet size, and emulsion stability index (ESI) after 7days from the reaction. On the other hand, the emulsification time, emulsification rate, and amount of emulsifier were selected as quantitative factors. According to the result of CCD, optimum conditions for the emulsification were as follows; the emulsification time of 22.63 min, emulsification speed of 6,627.41 rpm, and amount of emulsifier of 2.29 wt.%. Under these conditions, the viscosity, mean droplet size, and emulsion stability index (ESI) after 7 days from reaction were estimated as 1,707.56 cP, 1877.05 nm, and 93.23%, respectively. The comprehensive satisfaction of the CCD was indicated as 0.8848 with an average error of $1.2{\pm}0.1%$ from the experiment compared to that of the theoretical one. Overall, a very low error rate could be obtained when the central composite model was applied to the optimized coconut oil to water emulsification.

본 연구에서는 coconut oil과 sugar ester를 이용한 유화과정에 대한 최적화공정을 수행하였다. 최적화를 위해 반응표면분석법 중 중심합성계획모델을 이용하였다. 반응표면분석법의 반응치로는 유화액의 점도, 평균입자크기와 7 days 경과 후 ESI 등을 설정하였으며, 계량인자로는 유화시간, 유화속도 및 유화제의 첨가량을 설정하였다. 중심합성계획모델로 최적화과정을 수행한 결과 계량인자는 유화시간(22.63 min), 유화속도(6,627.41 rpm) 및 유화제의 첨가량(2.29 wt.%)에서 최적실험값인 점도(1,707.56 cP), 평균입자크기(1,877.05 nm) 및 7 days 경과 후 ESI (93.23%)로 종합만족도(D = 0.8848)가 높게 나타났다. 또한 이 조건에서 실제 실험을 통해 얻은 결과는 이론결과와 비해 평균오차율 $1.2{\pm}0.1%$로 작게 나타났다. 따라서 coconut oil의 유화과정에 반응표면분석법 중 중심합성계획법을 적용할 경우 매우 낮은 오차율을 얻을 수 있었다.

Keywords

References

  1. S. Intahphuak, P. Khonsung, and A. Panthong, Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil, Pharm. Biol., 48(2), 151-157 (2010). https://doi.org/10.3109/13880200903062614
  2. A. M. Marina, Y. B. Cheman, S. A. H. Nazimah, and I. Amin, Antioxidant capacity and phenolic acids of virgin coconut oil, Int. J. Food Sci. Nutr., 60(2), 114-123 (2009).
  3. G. Csoka, S. Marton, R. Zelko, N. Otomo, and I. Antal, Application of sucrose fatty acid esters in transdermal therapeutic systems, Eur. J. Pharm. Biopharm., 65(2), 233-237 (2007). https://doi.org/10.1016/j.ejpb.2006.07.009
  4. N. S. Neta, J. A. Teixeira, and L. R. Rodrigues, Sugar ester surfactants: Enzymatic synthesis and applications in food industry, Crit. Rev. Food Sci. Nutr., 55(5), 595-610 (2015). https://doi.org/10.1080/10408398.2012.667461
  5. W. Wei, F. Q. Feng, B. Perez, M. D. Dong, and G. Zheng, Biocatalytic synthesis of ultra- long-chain fatty acid sugar alcohol monoesters, Green Chem., 17, 3475-3489 (2017). https://doi.org/10.1039/c5gc00695c
  6. X. Zhang, W. Wei, X. Cao, and F. Q. Feng, Characterization of enzymatically prepared sugar medium-chain fatty acid monoesters, J. Sci. Food Agric., 95(8), 1631-1637 (2015). https://doi.org/10.1002/jsfa.6863
  7. T. N. Decaestecker, W. E. Lambert, C. H. Van Peteghem, D. Deforce, and J. F. van Bocxlaer, Optimization of solid-phase extraction for a liquid chromatographic-tandem mass spectrometric general unknown screening procedure by means of computational techniques, J. Chromatogr. A, 1056(1-2), 57-65 (2004). https://doi.org/10.1016/j.chroma.2004.06.010
  8. S. Khodadoust and M. Hadjmohammadi, Determination of N-methylcarbamate insecticides in water samples using dispersive liquid-liquid microextraction and HPLC with the aid of experimental design and desirability function, Anal. Chim. Acta, 699(1), 113-119 (2011). https://doi.org/10.1016/j.aca.2011.04.011
  9. W. L. Kang, B. Xu, Y. J. Wang, Y. Li, X. H. Shan, F. An, and J. H. Liu, Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant, Colloids Surf. A, 384(1-3), 555-560 (2011). https://doi.org/10.1016/j.colsurfa.2011.05.017
  10. F. Y. Ushikubo and R. L. Cunha, Stability mechanisms of liquid water-in-oil emulsions, Food Hydrocolloids, 34, 145-153 (2014). https://doi.org/10.1016/j.foodhyd.2012.11.016
  11. M. Homayoonfal, F. Khodaiyan, and M. Mousavi, Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability, Food Chem., 174, 649-659 (2015). https://doi.org/10.1016/j.foodchem.2014.10.117