DOI QR코드

DOI QR Code

Optimal Process Condition and Blowing of Thermoplastic Polyester Film using Thermally Expandable Microcapsule

열팽창 캡슐을 적용한 발포 폴리에스테르 필름의 최적 공정 조건 및 발포 특성

  • Bak, A Ram (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Park, Jung Hyun (Department of Clothing and Textiles, Pusan National University) ;
  • Lee, Seung Geol (Department of Organic Material Science and Engineering, Pusan National University)
  • 박아람 (부산대학교 유기소재시스템공학과) ;
  • 박정현 (부산대학교 의류학과) ;
  • 이승걸 (부산대학교 유기소재시스템공학과)
  • Received : 2019.09.05
  • Accepted : 2019.09.15
  • Published : 2019.09.27

Abstract

Blowing film was prepared using polyester elastomer with thermally expandable microcapsule to investigate the optimum blowing properties and the film making process. Physical properties including specific gravity, blowing efficiency, foaming shape, tensile strength and elongation of polyester film were tested by varying the process condition of temperature and revolution per minutes of the extruder. The lowest specific gravity of 0.709 can be achieved with excellent foaming cells at $210^{\circ}C$ and 50 RPM conditions. The highest tensile strength and elongation was shown at $210^{\circ}C$, 100 RPM and $230^{\circ}C$, 25 RPM conditions. However, most of the prepared polyester films showed over $1kg_f/mm^2$ of tensile strength which is reasonable value to use in film applications.

Keywords

References

  1. J. U. Ha, S. K. Jeoung, P. C. Lee, Y. J. Hwang, B. K. Nam, I. S. Han, S. B. Kwak, and J. Y. Lee, Physical Properties of Polypropylene Foam Blended with Thermally Expandable Microcapsules, Polymer(Korea), 39(1), 64(2014).
  2. Korea Textile Development Institute, "R&D Trends in Thermo Plastic Polyester Elastomer", Textopia, Daegu, pp.3-19, 2012.
  3. Y. Lee, J. Jeong, and J. Park, A Trend of R&D in Enviromental Thermoplastic Elastomer, Elastomers and Composites, 45(4), 245(2010).
  4. J. E. Sabahy, G. Castellan, F. Ricoul, and V. Jousseaume, Porous SiOCHThin FilmsObtained by Foaming, Journal of Physical Chemistry C, 120(17), 9184(2016). https://doi.org/10.1021/acs.jpcc.6b00204
  5. A. H. Landrock, "Handbook of Plastic Foams", Noyes, New Jersey, 1995.
  6. C. X. Chen, Q. Q. Liu, X. Xin, Y. X. Guan, and S. J. Yao, Pore Formation of Poly(${\varepsilon}$-caprolactone) Scaffolds with Melting Point Reduction in Supercritical $CO_2$ Foaming, The Journal of Supercritical Fluids, 117, 279(2016). https://doi.org/10.1016/j.supflu.2016.07.006
  7. D. Weaire and S. Hutzler, "The Physics of Foams", Oxford University Press, Oxford, 2001.
  8. D. S. Morehouse and R. J. Tetreault, U.S. Pat., 3,615,972(1971).
  9. M. Jonsson, O. Nordin, A. L. Kron, and E. Malmstrom, Influence of Crosslinking on the Characteristics of Thermally Expandable Microspheres Expanding at High Temperature, Journal of Applied Polymer Science, 118(2), 1219(2010). https://doi.org/10.1002/app.32301
  10. M. Jonsson, O. Nordin, E. Malmstrom, and C. Hammer, Suspension Polymerization of Thermally Expandable Core/shell Particles, Polymer, 47(10), 3315(2006). https://doi.org/10.1016/j.polymer.2006.03.013
  11. Y. Kawaguchi, Y. Itamura, K. Onimura, and T. Oishi, Effects of the Chemical Structure on the Heat Resistance of Thermoplastic Expandable Microspheres, Journal of Applied Polymer Science, 96(4), 1306(2005). https://doi.org/10.1002/app.21429
  12. Y. Kawaguchi and T. Oishi, Synthesis and Properties of Thermoplastic Expandable Microspheres: The Relation between Crosslinking Density and Expandable Property, Journal of Applied Polymer Science, 93(2), 505(2004). https://doi.org/10.1002/app.20460
  13. M. Tomalino and G. Bianchini, Heat-expandable Microspheres for Car Protection Production, Progress in Organic Coatings, 32(1-4), 17(1997). https://doi.org/10.1016/S0300-9440(97)00080-5
  14. H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, "Encyclopedia of Polymer Science and Engineering", Wiley, New Jersey, 1985.