DOI QR코드

DOI QR Code

Parametric survival model based on the Lévy distribution

  • Valencia-Orozco, Andrea (Escuela de Estadistica, Facultad de Ingenieria, Universidad del Valle) ;
  • Tovar-Cuevas, Jose R. (Escuela de Estadistica, Facultad de Ingenieria, Universidad del Valle)
  • Received : 2019.02.08
  • Accepted : 2019.08.27
  • Published : 2019.09.30

Abstract

It is possible that data are not always fitted with sufficient precision by the existing distributions; therefore this article presents a methodology that enables the use of families of asymmetric distributions as alternative probabilistic models for survival analysis, with censorship on the right, different from those usually studied (the Exponential, Gamma, Weibull, and Lognormal distributions). We use a more flexible parametric model in terms of density behavior, assuming that data can be fit by a distribution of stable distribution families considered unconventional in the analyses of survival data that are appropriate when extreme values occur, with small probabilities that should not be ignored. In the methodology, the determination of the analytical expression of the risk function h(t) of the $L{\acute{e}}vy$ distribution is included, as it is not usually reported in the literature. A simulation was conducted to evaluate the performance of the candidate distribution when modeling survival times, including the estimation of parameters via the maximum likelihood method, survival function ${\hat{S}}$(t) and Kaplan-Meier estimator. The obtained estimates did not exhibit significant changes for different sample sizes and censorship fractions in the sample. To illustrate the usefulness of the proposed methodology, an application with real data, regarding the survival times of patients with colon cancer, was considered.

Keywords

References

  1. Achcar JA, Barros EA, Tovar JR, and Mazucheli J (2018). Use of Levy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data, Communications for Statistical Applications and Methods, 25, 43-60. https://doi.org/10.29220/CSAM.2018.25.1.043
  2. Achcar JA, Lopes S, Mazucheli J, and Linhares R (2013). A Bayesian approach for stable distributions: some computational aspects, Open Journal of Statistics, 3, 268-277. https://doi.org/10.4236/ojs.2013.34031
  3. Adler R, Feldman R, and Taqqu M (1998). A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Springer Science & Business Media, United States of America.
  4. Ahsanullah M and Nevzorov VB (2014). Some inferences on the Levy distribution, Journal of Statistical Theory and Applications, 13, 205-211. https://doi.org/10.2991/jsta.2014.13.3.2
  5. Akritas M (1986). Bootstrapping the Kaplan-Meier estimator, American Statistical Association, 81, 1032-1038.
  6. Anderson J, Bernstein L, and Pike M (1982). Confidence intervals for probabilities of survival and quantiles in life-table analysis, Biometrics, 38, 407-416. https://doi.org/10.2307/2530454
  7. Ayant Y and Borg M (1974). Funciones Especiales (pp. 1-242), Madrid, Alhambra.
  8. Barber S and Jennison C (1999). Symmetric tests confidence intervals for survival probabilities and quantiles of censored data, Biometrics, 55, 430-436. https://doi.org/10.1111/j.0006-341X.1999.00430.x
  9. Borgan O and Liestol K (1990). A note on confidence intervals and bands for the survival function based on transformations, Scandinavian Journal of Statistics, 17, 35-41.
  10. Brookmeyer R and Crowley J (1982). A Confidence interval for the median survival time, Biometrics, 38, 29-41. https://doi.org/10.2307/2530286
  11. Buckle D (1995). Bayesian inference for stable distributions, Journal of the American Statistical Association, 90, 605-613. https://doi.org/10.1080/01621459.1995.10476553
  12. Cancho VG, Louzada F, and Barriga G (2012). The geometric Birnbaum-Saunders regression model with cure rate, Journal of Statistical Planning and Inference, 142, 993-1000. https://doi.org/10.1016/j.jspi.2011.11.007
  13. Cordeiro GM, Ortega E, and Silva GO (2011). The exponentiated generalized Gamma distribution with application to lifetime data, Journal of Statistical Computation and Simulation, 81, 827-842. https://doi.org/10.1080/00949650903517874
  14. De Pascoa MA, Ortega EM, and Cordeiro GM (2011). The Kumaraswamy generalized Gamma distribution with application in survival analysis, Statistical Methodology, 8, 411-433. https://doi.org/10.1016/j.stamet.2011.04.001
  15. Emerson J (1982). Nonparametric Confidence intervals for the median in the presence of right censoring, Biometrics, 81, 17-27. https://doi.org/10.2307/2530285
  16. Godoy AM (2009). Introduccion al analisis de supervivencia en R, Master's thesis, Universidad Nacional Autonoma de Mexico.
  17. Hashemian AH, Beiranvand B, Rezaei M, and Reissi D (2013). A comparison between Cox regression and parametric methods in analyzing kidney transplant survival, World Applied Sciences Journal, 26, 502-507.
  18. Henningsen A and Toomet O (2010). A package for maximum likelihood estimation in R, Computational Statistics, 3, 443-458.
  19. Jeng SL and Meeker W(2000). Approximate confidence interval procedures for type I censored data, Technometrics, 42, 135-148. https://doi.org/10.1080/00401706.2000.10485992
  20. Jennison C and Turnbull B (1985). Repeated confidence intervals for the median, Biometrika, 70, 619-625. https://doi.org/10.1093/biomet/72.3.619
  21. Martinez E and Achcar J (2014). Bayesian bivariate generalized Lindley model for survival data with a cure fraction, Computer Methods and Programs in Biomedicine, 117, 145-157. https://doi.org/10.1016/j.cmpb.2014.07.011
  22. Nash JC and Varadhan R (2011). Unifying optimization algorithms to aid software system users: optimx for R, Journal of Statistical Software, 9, 1-14.
  23. Nolan JP (2009). Stable Distributions: Models for Heavy-Tailed Data, University of California, United States of America.
  24. Ole B, Borgan O, and Liestol K (1987). Confidence intervals and confidence bands for the cumulative hazard rate function and their small sample properties, Scandinavian Journal of Statistics, 14, 221-233.
  25. Ramirez J (2010). Comparacion de intervalos de confianza para la funcion de supervivencia, en un tiempo de interes, con censura a derecha (Master's thesis), Universidad Nacional de Colombia Sede Medellin.
  26. R Core Team (2007). R: A Language and environment for statistical computing Vienna Austria: R Foundation for Statistical Computing.
  27. Reid N (1981). Estimating the median survival time, Biometrika, 68, 601-608. https://doi.org/10.1093/biomet/68.3.601
  28. Roman M, Louzada F, Cancho VG, and Leite JG (2012). A new long-term survival distribution for cancer data, Journal of Data Science, 10, 241-258.
  29. Samorodnitsky G and Taqqu M (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman and Hall/CRC, London.
  30. Slud E, Byar D, and Green S (1984). A Comparison of reflected versus test-based confidence intervals for the median survival time, Biometrics, 40, 587-600. https://doi.org/10.2307/2530903
  31. Solanas A and Olivera V (1992). Bootstrap: fundamentos e introduccion a sus aplicaciones, Anuario de Psicologia, 55, 143-154.
  32. Thomas D and Grunkemeier G (1975). Confidence interval estimation of survival probabilities for censored data, Journal of American Statistical Association, 70, 865-871. https://doi.org/10.1080/01621459.1975.10480315
  33. Yu Z, Anh V,Wang Y, Mao D, andWanliss J (2010). Modeling and simulation of the horizontal com- ponent of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition, Journal of Geophysical Research: Space Physics, 115(A10).