References
- Bakin S (1999). Adaptive regression and model selection in data mining problems (PhD thesis), The Australian National University.
- Chavent M and Kuentz-Simonet V (2012). ClustOfVar: an R package for the clustering of variables, Journal of Statistical Software, 50, 1-16.
- Ciuperca G (2019). Adaptive group LASSO selection in quantile models, Statistical Papers, 60, 173-197. https://doi.org/10.1007/s00362-016-0832-1
- Fan J (1997). Comments on wavelets in statistics: a review by A. Antoniadis, Journal of the Italian Statistical Society, 6, 131-138. https://doi.org/10.1007/BF03178906
- Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Hashem H, Vinciotti V, Alhamzawi R, and Yu K (2016). Quantile regression with group lasso for classification, Advances in Data Analysis and Classification, 10, 375-390. https://doi.org/10.1007/s11634-015-0206-x
- Hendricks W and Koenker R (1992). Hierarchical spline models for conditional quantiles and the demand for electricity, Journal of the American Statistical Association, 87, 58-68. https://doi.org/10.1080/01621459.1992.10475175
- Hoerl AE and Kennard RW (1970). Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634
- Hosmer DW and Lemeshow S (1989). Applied logistic regression, Wiley, Vol. 2.
- Huang J, Breheny P, and Ma S (2012). A Selective Review of Group Selection in High-Dimensional Models, Statistical Science, 27, 481-499. https://doi.org/10.1214/12-STS392
- Kato K (2011). Group Lasso for high dimensional sparse quantile regression models, arXiv:1103.1458 v2 [stat.ME].
- Koenker R (2004). Quantile regression for longitudinal data, Journal of Multivariate Analysis, 91, 74-89. https://doi.org/10.1016/j.jmva.2004.05.006
- Koenker R and Bassett G (1978). Regression quantiles, Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
- Koenker R and Hallock KF (2001). Quantile regression, Journal of Economic Perspectives, 15, 143-156. https://doi.org/10.1257/jep.15.4.143
- Koenker R, NG P, and Portnoy S (1994). Quantile smoothing splines, Biometrika, 81, 673-680. https://doi.org/10.1093/biomet/81.4.673
- Ogutu JO and Piepho HP (2014). Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD, BMC Proceedings, 8.
- Sakar BE, Isenkul ME, Sakar CO, Sertbas A, Gurgen F, Delil S, Apaydin H, and Kursun O (2013). Collection and analysis of a Parkinson Speech Dataset with multiple types of sound recordings, IEEE Journal of Biomedical and Health Informatics, 17, 828-834. https://doi.org/10.1109/JBHI.2013.2245674
- Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Wang H and He X (2007). Detecting differential expressions in GeneChip microarray studies: a quantile approach, Journal of the American Statistical Association, 102, 104-112. https://doi.org/10.1198/016214506000001220
- Wei Y and He X (2006). Conditional growth charts, The Annals of Statistics, 34, 2069-2097. https://doi.org/10.1214/009053606000000623
- Wei Y, Pere A, Koenker R, and He X (2006). Quantile regression methods for reference growth charts, Statistics in Medicine, 25, 1369-1382. https://doi.org/10.1002/sim.2271
- Wu Y and Liu Y (2009). Variable selection in quantile regression, Statistica Sinica, 19, 801-817.
- Yuan M and Lin Y (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Zhang CH (2010). Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729
- Zou H (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429, https://doi.org/10.1198/016214506000000735
- Zou H and Hastie T (2005). Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x