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Abstract
Grouping structures in covariates are often ignored in regression models. Recent statistical developments

considering grouping structure shows clear advantages; however, reflecting the grouping structure on the quantile
regression model has been relatively rare in the literature. Treating the grouping structure is usually conducted
by employing a group penalty. In this work, we explore the idea of group penalty to the quantile regression
models. The grouping structure is assumed to be known, which is commonly true for some cases. For example,
group of dummy variables transformed from one categorical variable can be regarded as one group of covariates.
We examine the group quantile regression models via two real data analyses and simulation studies that reveal
the beneficial performance of group quantile regression models to the non-group version methods if there exists
grouping structures among variables.

Keywords: group penalty, penalized quantile regression, variable selection

1. Introduction

In some regression problems we are interested in various percentage points of the distribution rather
than the overall average of the data. For these cases, Koenker and Bassett (1978) proposed a quantile
regression model that estimates the conditional quantile function of the response variable and iden-
tifies the effect for each quantile separately. With the advantages of quantile regression, its usage is
clearly increasing in various fields such as economics (Hendricks and Koenker, 1992; Koenker and
Hallock, 2001), microarray studies (Wang and He, 2007), demand analysis and empirical finance area
(Wei and He, 2006; Wei et al., 2006).

We focus on variable selection aspect of penalized quantile regression because variable selection
is an important procedure in the modeling as many datasets include a large number of candidate
predictors. Several methods were introduced under the regularization framework. Tibshirani R (1996)
proposed the least absolute shrinkage and selection operator (LASSO) using l1-norm and adaptive
LASSO and its oracle properties were shown by Zou (2006). Fan (1997) then proposed a smoothly
clipped absolute deviation (SCAD) penalty function and Fan and Li (2001) demonstrated its oracle
properties under a penalized likelihood. Later, Wu and Liu (2009) extended the oracle properties
of the SCAD penalty to the penalized quantile regression. After that Zhang (2010) proposed the
minimax concave penalty (MCP) and showed its oracle properties. However, Hoerl and Kennard
(1970) proposed ridge regression that employs l2 type penalty. Zou and Hastie (2005) introduced an
elastic net that combines l1 penalty of LASSO and l2 penalty of ridge.

For the case of variables showing grouping structure, it seems more appropriate to reflect a group-
ing structure for an accurate estimation and prediction. The most common example is the case when a
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categorical variable is converted to several dummy variables. A group of dummy variables from one
original categorical variable can be thought as the same group. Another example of the grouped vari-
ables is an additive model with polynomial variables. Terms forming a polynomial such as x1, x2

1, x
3
1

can be regarded as composing one group. Grouping can also be applied to the model which imposes
prior scientific information. For example, genes having same biological pathway can be classified
into the same group in genetic data analysis. When we analyze these type of data with group structure
among the variables, we can apply certain penalization methods with group penalties that reflect the
grouping information.

Group penalty can be applied when the grouping structure is unknown (thus must be estimated).
In biological studies, genetic data usually have background scientific information. For example, genes
with the same biological pathway are often located in a neighborhood forming a group. We need to
estimate grouping structure of predictors by certain clustering methods for variables such as Chavent
and Kuentz-Simonet (2012).

Several penalties considering grouping structure have been proposed. Group LASSO which uses
the l2-norm of the coefficients within a group was proposed by Bakin (1999) and extended by Yuan and
Lin (2006). Huang et al. (2012) then showed group SCAD and group MCP for covariates possessing
a grouping structure to select important groups. In the context of the quantile regression models,
Ciuperca (2019) proposed adaptive group LASSO that adaptive LASSO penalty and established the
sparsity and asymptotic normality of their methods. Kato (2011) considered high dimensional sparse
quantile regression models with group LASSO penalty and attained non-asymptotic error bound of
the estimation error. However, Group LASSO penalty was investigated for the classification problem
by Hashem et al. (2016).

The later part of this paper is organized as follows. Penalized quantile regression models with a
group penalty are introduced in Section 2. A real data set is analyzed in Section 3. In Section 4, we
compare the prediction performance of introduced methods under various simulation settings. The
conclusion and discussions are given in Section 5.

2. Group quantile regression models

We consider the linear model with p predictors:

Y = Xβτ + ϵ,

where Y = (y1, . . . , yn)T is an n × 1 vector of response variable, X = (xi j), i = 1, . . . , n, j = 1, . . . , p is
the design matrix of predictors and ϵ is a vector of independent random errors with mean 0. Then the
τth conditional quantile function can be estimated by solving

argmin
βτ∈Rp

n∑
i=1

ρτ
(
yi − xT

i βτ
)
, (2.1)

where xT
i is the ith row of X, βτ = (βτ,1, . . . , βτ,p)T and ρ(u) = τu− I(u < 0)u is the check loss function.

To produce sparse solution, Koenker et al. (1994) and Koenker (2004) suggested penalized version of
(2.1)

argmin
βτ∈Rp

n∑
i=1

ρτ
(
yi − xT

i βτ
)
+ λJ (βτ) , (2.2)

where λ ≥ 0 is the tuning parameter and J(βτ) denotes the penalty.



Group quantile regression 361

Figure 1: l1 penalty, Group LASSO penalty, l2 penalty from Yuan and Lin (2006).

Many penalties under mean regression exist for reflecting grouping information. In this study, we
propose group penalties under the quantile regression models. Group LASSO penalty, group SCAD
penalty, and group MCP under the quantile regression models will be newly defined.

First, group LASSO proposed by Yuan and Lin (2006) uses l2-norm of the coefficients within a
group. So it is regarded as a mixture of l1 penalty and l2 penalty, but a bit different from the elastic net
penalty by Zou and Hastie (2005). Figure 1 illustrates the concept that the coefficients composing the
group only by itself are affected by the l1 penalty. Suppose there are two groups with three variables
: β1 = (β11, β12)T and a scalar β2. Figure 1(a), (e), (i) show the contours of the penalties. Figure 1(a)
refers to |β11|+ |β12|+ |β2| = 1, Figure 1(g) refers to β2

11+β
2
12 = 1. In Figure 1(g), group LASSO selects

both β11 and β12 at the same time. Consequently, in Figure 1(e), group LASSO then shows sparsity
at the group level. From this process, the group LASSO selects only groups of variables, while not
selecting variables within groups individually. Suppose that the predictor variables were divided into
G different groups, then group LASSO penalty under quantile regression is defined as

β̂(gLASSO) = argmin
βτ∈Rp

n∑
i=1

ρτ
(
yi − xT

i,gβτ,g
)
+ λ

G∑
g=1

√
Kg||βτ,g||2, (2.3)

where xi,g is the design matrix for the ith sample where its columns correspond to the predictors in
group g and βτ,g is coefficient vector of group g and Kg is the number of covariates in group g. Here,
Kg is used to adjust the size of groups.
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Besides LASSO, other penalty functions can be applied. By applying SCAD penalty and MCP
under quantile regression, they are defined as

β̂(gSCAD) = argmin
βτ∈Rp

n∑
i=1

ρτ
(
yi − xT

i,gβτ,g
)
+

G∑
g=1

p1λ,γ(||βτ,g||2), (2.4)

p1λ,γ(β) =



λ|β|, |β| ≤ λ,
2γλ|β| − β2 − λ2

2(γ − 1)
, λ < |β| ≤ γλ,

λ2(γ + 1)
2

, |β| > γλ.

β̂(gMCP) = argmin
βτ∈Rp

n∑
i=1

ρτ
(
yi − xT

i,gβτ,g
)
+

G∑
g=1

p2λ,γ(||βτ,g||2), (2.5)

p2λ,γ(β) =


λ|β| − β

2

2γ
, |β| ≤ γλ,

1
2
γλ2, |β| > γλ.

From the (2.4) and (2.5), penalty is preferentially applied to each variables in g groups by the
group unit. The summation over g is then substituted so that we can decide which groups of variables
to be selected. The form of SCAD and MCP penalties are similar; however, the group SCAD is
reported to show less grouping than group MCP (Ogutu and Piepho, 2014). The implementation of
finding the solutions for the group LASSO, SCAD, MCP is done via the R package rqPen. rqPen
produces estimates using the QICD command.

The theoretical properties of the group SCAD and group MCP are rarely known under the con-
ditional mean regression despite the well-known oracle properties of the SCAD and MCP under the
linear models. Additional complexity such as the true number of group and whether the number
of group is fixed or increasing seems to hinder the exploration of the theoretical grounding. Un-
fortunately, we do not provide some theoretical properties under the quantile regression with these
penalties.

3. Application to real data sets

3.1. Birth weight data

The birth weight data set from Hosmer and Lemeshow (1989) is used for the real data analysis.
The data were collected at Baystate Medical Center in Springfield, Massachusetts. The data has the
birthweight: birth weights of n = 188 babies and eight predictors about the mother, three of them are
continuous variables and the rest are categorical variables. The three continuous variables are

• age: age of mother (years)

• weight: weight of mother at last menstrual period (pounds)

• visit: number of physician visits during the first trimester (0, 1, 2, or 3 or more).

The five categorical variables are

• race: race of mother (white, black, or the others)
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Table 1: Birth weight data: Coefficients of group LASSO, LASSO, group SCAD, and SCAD penalized median
regression from arbitrary one fit

Variable LASSO(G) LASSO(NG) SCAD(G) SCAD(NG)
intercept 3798.4927 2207.0331 2243.9668 2591.5665
age −145.8383 0.0000 −3.2061 0.0000
age2 3.0818 0.2200 0.2841 0.1924
weight 6.0441 4.9070 4.9070 2.1216
smoking 0.0000 0.0000 0.0000 0.0000
hyper 0.0000 0.0000 0.0000 0.0000
uterine 0.0000 0.0000 0.0000 0.0000
visit 0.0000 0.0000 0.0000 0.0000
race1 0.0000 0.0000 0.0000 0.0000
race2 0.0000 0.0000 0.0000 0.0000
pre1 0.0000 0.0000 0.0000 0.0000
pre2 0.0000 0.0000 0.0000 0.0000

LASSO = least absolute shrinkage and selection operator; SCAD = smoothly clipped absolute deviation.

• smoking: smoking status during pregnancy (yes or no)

• pre: history of premature labor (0, 1, 2, or 3)

• hyper: history of hypertension (yes or no)

• uterine: presence of uterine irritability (yes or no).

The dummy variables from each categorical variable are treated as one group for the group quantile
regression model. Race1 and race2 are created for white and others respectively so that black is
baseline category for race. For pre, pre1 stands for history of premature labor once and pre2 stands for
two or more than two times of premature labors. After the preliminary analysis, age2 is added to the
model. Taking birthweight as a response variable, we fit quantile regression models at τ = 0.5 to find
significant variables. Our model is,

E(birthweight) = β0 + β1age + β2age2 + β3weight + β4smoking + β5hyper
+ β6uterine + β7visit + β8race1 + β9race2 + β10pre1 + β11pre2.

When a full model is fitted with LASSO, SCAD, group LASSO, group SCAD, we have the results for
Table 1. From the results, group penalties select both age and age2 simultaneously whereas LASSO
and SCAD only choose age.

Simulation studies are conducted to see which methods yield a better estimate. First, we randomly
divide the data into two parts. The first part is training data with 100 samples, and the other 88
samples are used for test data. The penalty parameter λ is chosen from the training data by employing
a 10-fold cross validation. After selecting λ value, we fit LASSO penalized quantile regression,
SCAD penalized quantile regression, group LASSO penalized quantile regression, and group SCAD
penalized quantile regression to the training data. We then obtain the estimates for 12 coefficients and
predict 88 values of response variable in the test data. Finally, predicted mean check error (PMCE)
from 88 predicted values is calculated to gauge the performance. PMCE is therefore obtained by
calculating the mean check error only with the test data. PMCE is defined as follow with the observed
yi and predicted ŷi over the test data with ntest = 88:

PMCE =
1

ntest

ntest∑
i=1

{τ|yi − ŷi|I(yi > ŷi) + (1 − τ)|yi − ŷi|I(yi ≤ ŷi)} . (3.1)
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Table 2: Birthweight data: Mean of PMCE, pure PMCE (and its standard error in the parentheses) for group
LASSO, group SCAD, LASSO, and SCAD penalized median regression and mean regression from 500
different splits of data

Median Median Median Median
LASSO(G) LASSO(NG) SCAD(G) SCAD(NG)

PMCE 292.74 297.71 296.16 298.39
Pure PMCE 12.40 17.37 15.82 18.05

(0.86) (0.78) (0.81) (0.78)
Mean Mean Mean Mean

LASSO(G) LASSO(NG) SCAD(G) SCAD(NG)
PMCE 277.07 277.22 280.60 279.83

(0.79) (0.79) (0.82) (0.82)

PMCE = predicted mean check error; LASSO = least absolute shrinkage and selection operator; SCAD = smoothly clipped
absolute deviation.

We repeat this procedure 500 times to reduce the variation from splitting the data. Table 2 then
summarizes the mean of PMCE and its standard error.

From the results, the group version of LASSO and SCAD show better performance that the non-
group version of penalties for median regression.

Noting that there is a certain lower bound for PMCE, we observe that PMCE cannot be smaller
than the mean check error using the whole data in theory. This is because PMCE is calculated from
the test data only. For this reason, the mean check error using all samples is obtained and subtracted
from PMCE. Subtracting the mean check error is similar to removing the variance of the error σ2 in
the model as the mean check error is often used as σ̂2. It seems reasonable to use pure PMCE as we
often remove σ2 in simulation studies for calculating PMCE. Now, this pure PMCE shows a 12.4%
to 28.6% reduction by the group penalty methods. Therefore, we can clearly see some benefits of the
proposed methods.

3.2. Parkinson speech data

This data set contains measurement of voice recordings from equal number of healthy people and
people with Parkinsonism who suffer from speech impairments. The covariates are n = 1040 mea-
surements from p = 26 types of sound recordings. The time-frequency based 26 covariates can be
categorized into 6 groups where the groups are known. See Sakar et al. (2013) for the details of the
data set. The response variable is the united Parkinson’s disease rating scale (UPDRS) having values
from 1 (normal) to 55 (most severe). As the half of the measurements are from healthy people, about
half of the response variable is equal to 1. For this reason, we do not fit the quantile regression with
quantiles less than 0.5, but τ = 0.5, . . . , 0.9 are examined.

We compare the LASSO and SCAD penalized quantile regression models and their counterparts
with group penalties. For this purpose, the 1,040 samples are randomly split into 2/3 of training data
and other test data. Using the training data, we fit the considered models where the penalty parameters
were sought by a 10-fold cross-validation. After choosing an ‘optimal’ penalty parameter, we fit the
training data and then predict the values of the response variable in the test data. The prediction error
is measured with the check error defined in (3.1). We repeat this procedure 100 times to reduce the
variation that arises from the random split. Table 3 provides the mean of 100 PMCE value at each
value of τ and shows a smaller PMCE from the group penalties. The methods with group penalties
show the most reduction in the PMCE at τ = 0.7 and very slight increase when τ = 0.9. In general,
we see the improvement by incorporating the group penalties.
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Table 3: Parkinson speech data: Mean of PMCE (and its standard error in the parentheses) for LASSO, group
LASSO, SCAD, and group SCAD penalized regression at various quantiles from 100 different splits of data.
Percentage of PMCE reduction by incorporating the group penalties are shown as % reduction

τ 0.5 0.6 0.7 0.8 0.9
SCAD (NG) 6.00 (0.04) 6.71 (0.04) 6.45 (0.04) 5.46 (0.02) 3.36 (0.01)
SCAD(G) 5.85 (0.04) 6.57 (0.04) 5.79 (0.03) 5.03 (0.03) 3.39 (0.01)
% reduction 2.53 1.88 10.20 7.97 −1.00
LASSO (NG) 5.93 (0.07) 6.63 (0.08) 6.39 (0.08) 5.36 (0.08) 3.30 (0.05)
LASSO(G) 5.78 (0.06) 6.50 (0.08) 5.74 (0.07) 5.00 (0.08) 3.34 (0.05)
% reduction 2.42 1.95 10.25 7.56 −1.01

PMCE = predicted mean check error; LASSO = least absolute shrinkage and selection operator; SCAD = smoothly clipped
absolute deviation.

Table 4: Simulation results for Model I: Mean of MSE, TP rate, TN rate for LASSO, SCAD, MCP are from 200
simulated data sets with n = 100

LASSO(G) LASSO(NG) SCAD(G) SCAD(NG) MCP(G) MCP(NG)

τ = 0.1

MSE 873.18 983.28 1664.51 1423.33 1667.30 1430.00
(37.2) (30.2) (62.2) (39.1) (59.3) (37.9)

TP rate 78.25 68.58 94.58 60.08 95.67 60.67
(1.0) (1.5) (1.2) (1.6) (1.0) (1.6)

TN rate 42.00 39.82 64.71 48.93 64.39 48.68
(1.8) (1.5) (2.4) (1.6) (2.5) (1.5)

τ = 0.2

MSE 403.28 899.76 549.90 1170.84 562.90 1211.79
(15.4) (26.1) (19.3) (26.6) (20.2) (28.3)

TP rate 74.75 62.92 94.83 45.08 95.67 45.67
(1.1) (1.5) (1.0) (1.5) (0.9) (1.6)

TN rate 54.43 46.75 72.96 67.86 71.68 67.79
(1.8) (1.6) (2.2) (1.6) (2.2) (1.7)

τ = 0.3

MSE 299.36 862.30 305.80 1087.98 300.55 1106.97
(8.5) (24.1) (12.2) (23.7) (11.7) (25.9)

TP rate 77.00 57.25 94.83 39.25 95.00 38.33
(1.1) (1.7) (0.9) (1.5) (1.1) (1.4)

TN rate 55.64 53.71 76.32 75.36 76.79 76.64
(2.0) (1.7) (2.1) (1.6) (2.2) (1.5)

τ = 0.4

MSE 254.80 833.40 217.07 1092.55 214.99 1082.13
(7.7) (25.0) (8.6) (27.3) (8.4) (25.4)

TP rate 77.00 55.25 92.92 35.58 93.67 36.00
(1.4) (1.8) (1.2) (1.5) (1.1) (1.5)

TN rate 58.86 57.82 81.00 81.21 80.96 81.68
(2.0) (1.9) (1.9) (1.5) (2.0) (1.5)

τ = 0.5

MSE 243.28 821.00 209.41 1086.88 205.59 1084.43
(7.6) (26.7) (8.4) (26.7) (8.6) (26.1)

TP rate 76.83 52.58 91.42 33.92 91.83 33.50
(1.5) (1.7) (1.2) (1.4) (1.2) (1.5)

TN rate 60.29 60.96 77.11 82.07 77.79 82.39
(2.1) (1.9) (2.1) (1.3) (2.1) (1.4)

Standard errors are in parenthesis. All values are multiplied by 102.
LASSO = least absolute shrinkage and selection operator; SCAD = smoothly clipped absolute deviation; MCP = minimax
concave penalty; MSE = mean squared error; TP = true positive; TN = true negative.

4. Simulation studies

In this section, we compare the prediction performance of LASSO, SCAD, MCP and grouped version
of LASSO, SCAD, MCP under the four simulation scenarios. In the first scenario, we fit an additive
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Table 5: Simulation results for Model II: Mean of MSE, TP rate, TN rate for LASSO, SCAD, MCP are from
200 simulated data sets with n = 100

LASSO(G) LASSO(NG) SCAD(G) SCAD(NG) MCP(G) MCP(NG)

τ = 0.1

MSE 892.65 1361.60 991.70 1698.67 982.53 1706.56
(11.1) (29.5) (19.9) (38.8) (19.2) (39.8)

TP rate 59.06 46.63 62.19 32.75 61.94 33.81
(1.6) (1.7) (1.7) (1.5) (1.6) (1.6)

TN rate 47.35 48.06 84.18 65.12 85.59 64.53
(1.7) (1.4) (1.3) (1.5) (1.2) (1.5)

τ = 0.2

MSE 818.28 1394.68 844.13 1645.89 836.67 1641.21
(11.6) (30.0) (19.8) (31.8) (14.6) (30.8)

TP rate 62.06 53.44 73.63 35.38 74.19 33.94
(1.4) (1.8) (1.2) (1.7) (1.2) (1.6)

TN rate 52.21 49.94 65.32 68.26 64.12 69.15
(1.8) (1.7) (2.1) (1.7) (2.2) (1.7)

τ = 0.3

MSE 757.97 1364.15 720.11 1606.66 714.26 1614.34
(14.2) (27.2) (14.6) (28.3) (14.1) (27.4)

TP rate 67.63 51.25 76.94 32.00 77.56 31.69
(1.5) (1.6) (1.2) (1.5) (1.2) (1.5)

TN rate 50.44 51.71 65.06 70.68 64.06 71.18
(1.8) (1.6) (2.1) (1.6) (2.1) (1.6)

τ = 0.4

MSE 672.45 1406.66 671.74 1627.18 678.25 1640.61
(15.8) (27.9) (17.0) (29.6) (16.5) (29.8)

TP rate 71.56 52.31 79.19 32.81 79.19 31.56
(1.4) (1.7) (1.2) (1.5) (1.1) (1.5)

TN rate 49.06 46.65 60.94 67.56 61.26 69.79
(1.7) (1.6) (3.1) (1.6) (2.1) (1.5)

τ = 0.5

MSE 621.12 1414.99 590.80 1632.37 587.34 1633.92
(14.2) (29.6) (17.1) (28.9) (17.3) (27.9)

TP rate 72.50 50.56 81.50 31.44 82.00 31.06
(1.4) (1.8) (1.3) (1.6) (1.2) (1.6)

TN rate 48.50 47.24 61.03 67.68 60.97 67.65
(1.6) (1.5) (2.0) (1.6) (2.0) (1.6)

Standard errors are in parenthesis. All values are multiplied by 102.
LASSO = least absolute shrinkage and selection operator; SCAD = smoothly clipped absolute deviation; MCP = minimax
concave penalty; MSE = mean squared error; TP = true positive; TN = true negative.

model of continuous variables through third-order polynomial. In the second scenario, we fit an
additive model of both continuous and categorical variables also through a third-order polynomial.
In the third we consider an additive model of only categorical variables. Finally, we fit an ANOVA
model with all the two-way interactions. In all simulations, the errors ϵ are from the standard normal
distribution. The penalty parameters are selected by 10-fold cross-validation where the check loss is
used for both model construction and validation.

• Model I: Random variables Z1, . . . ,Z16 and W are independently generated from a standard normal
distribution. The covariates are then defined as Xi = (Zi +W)/

√
2. The model is:

Y =
1
2

X3
3 +

1
2

X2
3 +

1
2

X3 +
1
6

X3
6 −

1
2

X2
6 +

1
3

X6 + ϵ.

• Model II: X1, . . . , X20 are generated as in model I. Then X11, . . . , X20 are first generated according to
a centered multivariate normal distribution with a covariance between Xi and X j being 0.5|i− j|. Then
Xi is trichotomized as 0, 1, or 2 if it is smaller than Φ−1(1/3), larger than Φ−1(2/3) or in between.
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Table 6: Simulation results for Model III. Mean of MSE, TP rate, TN rate for LASSO, SCAD, MCP are from
200 simulated data sets with n = 100

LASSO(G) LASSO(NG) SCAD(G) SCAD(NG) MCP(G) MCP(NG)

τ = 0.1

MSE 282.81 818.73 394.63 825.53 398.62 825.67
(8.9) (6.2) (11.5) (6.6) (11.6) (6.7)

TP rate 73.58 55.25 46.17 42.67 46.58 43.67
(1.6) (1.8) (2.1) (1.6) (2.2) (1.6)

TN rate 36.83 52.42 59.54 65.71 58.54 64.42
(1.5) (1.8) (2.4) (1.6) (2.4) (1.6)

τ = 0.2

MSE 202.82 772.30 202.72 768.74 198.41 770.85
(6.8) (5.9) (8.2) (5.3) (7.9) (5.5)

TP rate 86.17 52.67 81.58 42.75 81.25 40.67
(1.3) (1.9) (1.8) (1.7) (1.8) (1.6)

TN rate 31.04 57.75 43.71 69.13 45.08 70.42
(1.7) (1.9) (2.2) (1.8) (2.2) (1.7)

τ = 0.3

MSE 160.78 747.47 168.09 740.63 168.95 739.28
(7.0) (7.2) (9.4) (7.5) (9.6) (7.3)

TP rate 91.67 51.17 85.58 41.00 85.25 41.58
(1.0) (1.8) (1.6) (1.7) (1.7) (1.7)

TN rate 28.92 57.17 44.67 68.25 43.75 68.42
(1.6) (1.9) (2.1) (1.8) (2.0) (1.8)

τ = 0.4

MSE 139.23 726.39 158.78 714.23 151.52 711.59
(5.9) (6.8) (9.7) (6.6) (9.1) (6.2)

TP rate 93.67 49.75 87.75 38.92 88.75 39.00
(0.8) (1.7) (1.6) (1.5) (1.5) (1.5)

TN rate 27.96 54.88 41.33 68.17 41.33 69.00
(1.6) (1.7) (2.2) (1.6) (2.1) (1.5)

τ = 0.5

MSE 138.13 719.82 153.13 715.73 157.20 714.26
(6.3) (8.1) (9.6) (8.5) (10.0) (9.0)

TP rate 94.17 51.33 89.75 40.83 89.33 40.42
(0.8) (1.7) (1.4) (1.8) (1.5) (1.8)

TN rate 28.75 52.71 41.50 65.38 40.83 64.71
(1.5) (1.6) (2.1) (1.6) (2.2) (1.7)

Standard errors are in parenthesis. All values are multiplied by 102.
LASSO = least absolute shrinkage and selection operator; SCAD = smoothly clipped absolute deviation; MCP = minimax
concave penalty; MSE = mean squared error; TP = true positive; TN = true negative.

ϵ ∼ N(0, 22). The model is:

Y =
1
2

X3
3 +

1
2

X2
3 +

1
2

X3 +
1
6

X3
6 −

1
2

X2
6 +

1
3

X6 + I(X11 = 0) +
1
2

I(X11 = 1) + ϵ.

• Model III: Random variables X1, . . . , X15 are first simulated according to a centered multivariate
normal distribution with covariance between Xi and X j being 0.5|i− j|. Then Xi is trichotomized as 0,
1, or 2 if it is smaller than Φ−1(1/3), larger than Φ−1(2/3) or in between. The model is:

Y = 0.9I(X1=1) − 0.6I(X1=0) + 0.5I(X3=1) + 0.25I(X3=0) + 0.5I(X5=1) + 0.5I(X5=0) + ϵ.

• Model IV: 4 categorical factors X1, X2, X3 and X4 are generated as in model III. The model is:

Y = 1.5I(X1 = 1) + I(X1 = 0) + 1.5I(X2 = 1) + 1I(X2 = 0) + 0.5I(X1 = 1, X2 = 1)
+ 0.75I(X1 = 1, X2 = 0) + I(X1 = 0, X2 = 1) + 1.25I(X1 = 0, X2 = 0) + ϵ.
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Table 7: Simulation results for Model IV. Mean of MSE, TP rate, TN rate for LASSO, SCAD, MCP are from
200 simulated data sets with n = 100

LASSO(G) LASSO(NG) SCAD(G) SCAD(NG) MCP(G) MCP(NG)

τ = 0.1

MSE 974.87 4382.14 1089.52 4378.63 1087.99 4348.43
(35.7) (48.4) (61.4) (46.9) (61.1) (43.8)

TP rate 90.44 64.75 97.81 51.88 97.81 51.00
(0.9) (2.2) (0.6) (2.4) (0.6) (2.4)

TN rate 23.25 35.25 8.38 48.13 8.00 49.00
(1.0) (2.2) (1.1) (2.4) (1.1) (2.4)

τ = 0.2

MSE 761.39 4016.89 977.69 4143.90 994.03 4151.36
(33.7) (42.1) (44.2) (47.3) (43.3) (46.2)

TP rate 93.38 71.75 83.44 54.38 82.69 55.13
(0.8) (1.9) (1.7) (2.5) (1.7) (2.5)

TN rate 25.63 28.25 29.00 45.63 28.63 44.88
(1.9) (1.9) (2.2) (2.5) (2.2) (2.5)

τ = 0.3

MSE 642.29 3853.86 946.14 3963.01 929.65 4026.50
(29.1) (51.1) (42.8) (54.7) (42.5) (58.1)

TP rate 93.94 75.25 80.75 65.13 81.75 63.50
(0.7) (1.7) (1.7) (2.0) (1.7) (2.0)

TN rate 25.00 24.75 38.50 34.88 37.38 36.50
(1.8) (1.7) (2.6) (2.0) (2.6) (2.0)

τ = 0.4

MSE 641.29 3601.66 941.30 3751.45 975.85 3759.88
(30.8) (51.0) (44.1) (56.8) (44.2) (57.1)

TP rate 92.00 74.25 81.56 62.88 80.44 62.13
(0.9) (1.7) (1.7) (1.9) (1.7) (1.9)

TN rate 29.00 25.75 41.25 37.13 40.75 37.88
(2.0) (1.7) (2.7) (1.9) (2.6) (1.9)

τ = 0.5

MSE 702.93 3445.67 1043.48 3571.69 1056.95 3599.84
(34.0) (49.4) (47.6) (52.0) (47.4) (51.9)

TP rate 90.06 78.63 78.31 57.13 78.19 57.50
(0.9) (1.5) (1.7) (2.0) (1.7) (2.0)

TN rate 28.63 21.38 45.63 42.88 43.63 42.50
(1.9) (1.9) (2.9) (2.0) (2.8) (2.0)

Standard errors are in parenthesis. All values are multiplied by 102.
LASSO = least absolute shrinkage and selection operator; SCAD = smoothly clipped absolute deviation; MCP = minimax
concave penalty; MSE = mean squared error; TP = true positive; TN = true negative.

We generate R = 200 datasets for each example and penalty parameter is chosen through a 10-fold
cross validation under 100 penalty parameter values. To measure the performance of the methods, we
use mean squared error (MSE) for estimation accuracy calculated as MSE = (β̂ − β)TE(XT X)(β̂ −
β) along with the true positive (TP) rate and the true negative (TN) rate for identification accuracy
over R simulated data sets. From above 4 models, we compare group penalized quantile regression
of LASSO, SCAD, MCP (LASSO(G), SCAD(G), MCP(G)) and penalized quantile regression not
considering grouping structure (LASSO(NG), SCAD(NG), MCP(NG)). Sample size n = 100 and 200
are considered, but the results from n = 100 are reported only.

For implementation, we use rqPen for both the grouped version and non-grouped version of
LASSO, SCAD, MCP. The results of the simulation for Model I are summarized in Table 4, Model II
are in Table 5, Model III are in Table 6, and Model IV are in Table 7.

From the results, we can notice that the group version of LASSO, SCAD, MCP perform better
than the models not considering grouping structure in most cases.

Finally, we only investigate heavy tail distributions under the Model I. Now, the error distributions
ϵ are generated from the t-distribution with 5 degrees of freedom. 200 Monte Carlo data sets with
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Table 8: Mean of MSE, TP rate, and TN rate for LASSO and Group LASSO (and its standard error in the
parentheses).

MSE TP rate TN rate

τ = 0.1 LASSO(NG) 30.78 (1.35) 99.58 (0.18) 55.36 (1.61)
LASSO(G) 26.02 (1.04) 100.00 (0.00) 57.29 (1.42)

τ = 0.2 LASSO(NG) 30.28 (1.21) 99.50 (0.20) 56.36 (1.53)
LASSO(G) 26.39 (1.06) 100.00 (0.00) 57.82 (1.53)

τ = 0.3 LASSO(NG) 30.26 (1.28) 6.71 (0.20) 55.71 (1.58)
LASSO(G) 26.46 (1.04) 100.00 (0.00) 56.39 (1.50)

τ = 0.4 LASSO(NG) 30.44 (1.27) 6.71 (0.18) 55.11 (1.56)
LASSO(G) 26.27 (1.04) 100.00 (0.00) 58.21 (1.52)

τ = 0.5 LASSO(NG) 30.52 (1.27) 6.71 (0.18) 56.46 (1.61)
LASSO(G) 26.57 (1.04) 100.00 (0.00) 57.11 (1.50)

Errors follows t-distribution with 5 degrees of freedom. All values are multiplied by 102. (NG) and (G) respectively stands
for non-group and group version of LASSO.
LASSO = least absolute shrinkage and selection operator; MSE =mean squared error; TP = true positive; TN = true negative.

n=200 samples are generated and we summarize the results by the mean of the MSE, mean true
positive rate (TP rate), and mean true negative rate (TN rate).

The results in Table 8 show that the group version of the regression models yield the lower MSE
with higher true positive and true negative rates under heavy tail error distribution.

5. Concluding remarks

This work presents numerical studies for group penalized quantile regression with the group LASSO,
group SCAD, and group MCP penalties for analyzing the data with a grouping structure. The appli-
cation of group penalty to quantile regression seems reasonable and improves the fit. We also applied
group penalties to high dimensional data; however, these penalties did not work well in R package
rqPen. It also failed to capture the grouping structure and provided the same results as the non-group
version despite being designed for high dimensional data. High dimension data is common in genetic
areas; therefore, future studies on its implementation look very interesting.
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