DOI QR코드

DOI QR Code

4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies

  • 김광수 (서울대학교 식물생산과학부) ;
  • 유병현 (서울대학교 식물생산과학부) ;
  • 현신우 (서울대학교 식물생산과학부) ;
  • 강대균 (서울대학교 협동과정 농림기상학)
  • Kim, Kwang Soo (Department of Plant Science, Seoul National University) ;
  • Yoo, Byoung Hyun (Department of Plant Science, Seoul National University) ;
  • Hyun, Shinwoo (Department of Plant Science, Seoul National University) ;
  • Kang, DaeGyoon (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
  • 투고 : 2019.09.16
  • 심사 : 2019.09.26
  • 발행 : 2019.09.30

초록

기상 및 기후 정보를 활용하여 기후변화에 대응하기 위한 기후 스마트 농업을 도입하기 위한 노력이 진행되어 왔다. 기후 스마트 농업을 실현하기 위해 농가별 기상자료 수집 및 관리가 요구된다. 4차 산업혁명 시대의 주요한 기술인 IoT, 인공지능, 및 클라우드 컴퓨팅 기술들이 농가 단위의 기상정보 생산에 적극적으로 활용될 수 있다. 저비용과 저전력 특성을 가진 IoT 센서들로 무선 센서 네트워크를 구축할 경우, 농가나 농촌 공동체 수준에서 농업 생태계의 생산성을 파악할 수 있는 기상관측자료의 수집 및 분석이 가능하다. 무선 센서 네트워크를 통해 자료가 수집될 수 있는 공간적인 범위를 특정 농가보다는 농촌 공동체 수준으로 확대하여 IoT 기술의 수혜 농가를 확대하고, 아울러 상세기상정보의 생산 및 검증에 활용가능한 농업기상 빅데이터 구축이 필요하다. 기존에 개발되어 보급되고 있는 전자기후도를 활용하여, 농가 단위의 기상 추정 자료가 제공되고 있다. 이들 자료의 신뢰성을 향상시키고, 기존의 서비스 체계에서 제공되지 않고 있는 기상 변수들을 지원하기 위해 심층신경망과 같은 인공지능 기술들이 도입되어야 할 것이다. 시스템 구축의 비용 절감 및 활용성 증대를 위해 클라우드 및 포그 컴퓨팅 기술을 도입하여 농업 기상 정보 서비스 시스템이 설계되어야 한다. 또한, 기상자료와 농산물 가격 정보와 같은 환경자료와 경영정보를 동시에 제공할 수 있는 정보 시스템을 구축하여 활용도가 높은 농업 기상 서비스 시스템이 구축되어야 할 것이다. 이와 함께, 농업인 뿐만 아니라 소비자까지도 고려된 모바일 어플리케이션의 설계 및 개발을 통해, 4차 산업혁명의 주요 기술들이 농업 분야에서 확산될 수 있도록 지속적인 노력이 필요하다. 이러한 정보 시스템은 농업 분야 이해당사자에게 수요자 맞춤형 농림기상정보를 제공하여 기후스마트 농업 관련 기술의 개발과 도입을 촉진시킬 수 있을 것이다.

Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

키워드

참고문헌

  1. Adair, E. C., L. Barbieri, K. Schiavone, and H. M. Darby, 2019: Manure application decisions impact nitrous oxide and carbon dioxide emissions during mon-growing season thaws. Soil Science Society of America Journal 83(1), 163pp. https://doi.org/10.2136/sssaj2018.07.0248
  2. Bai, X., Z. Wang, L. Zou, and F. E. Alsaadi, 2018: Collaborative fusion estimation over wireless sensor networks for monitoring CO2 concentration in a greenhouse. Information Fusion 42, 119-126. https://doi.org/10.1016/j.inffus.2017.11.001
  3. Barnett, B. J., and O. Mahul, 2007: Weather index insurance for agriculture and rural areas in lower-income countries. American Journal of Agricultural Economics 89(5), 1241-1247. https://doi.org/10.1111/j.1467-8276.2007.01091.x
  4. Besharat, F., A. A. Dehghan, and A. R. Faghih, 2013: Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews 21, 798-821. https://doi.org/10.1016/j.rser.2012.12.043
  5. Bonomi, F., R. Milito, J. Zhu, and S. Addepalli, 2012: Fog computing and its role in the internet of things, Proceedings of the first edition of the MCC workshop on Mobile cloud computing, ACM, 13-16.
  6. Celik, O., A. Teke, and H. B. Yildirim, 2016: The optimized artificial neural network model with Levenberg-Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. Journal of Cleaner Production 116, 1-12. https://doi.org/10.1016/j.jclepro.2015.12.082
  7. Chavas, D. R., R. C. Izaurralde, A. M. Thomson, and X. Gao, 2009: Long-term climate change impacts on agricultural productivity in eastern China. Agricultural and Forest Meteorology 149(6-7), 1118-1128. https://doi.org/10.1016/j.agrformet.2009.02.001
  8. Choi, M.-H., J.-I. Yun, U. R. Chung, and K.-H. Moon, 2010: Performance of Angstrom-Prescott Coefficients under different time scales in estimating daily solar radiation in South Korea. Korean Journal of Agricultural and Forest Meteorology 12(4), 232-237. https://doi.org/10.5532/KJAFM.2010.12.4.232
  9. Coates, R. W., M. J. Delwiche, A. Broad, and M. Holler, 2013: Wireless sensor network with irrigation valve control. Computers and Electronics in Agriculture 96, 13-22. https://doi.org/10.1016/j.compag.2013.04.013
  10. Davcev, D., K. Mitreski, S. Trajkovic, V. Nikolovski, and N. Koteli, 2018: IoT agriculture system based on LoRaWAN. 1-4.
  11. Dimatteo, S., P. Hui, B. Han, and V. O. K. Li, 2011: Cellular traffic offloading through WiFi networks. 192-201.
  12. Foughali, K., K. Fathallah, and A. Frihida, 2018: Using cloud IOT for disease prevention in precision agriculture. Procedia Computer Science 130, 575-582. https://doi.org/10.1016/j.procs.2018.04.106
  13. Freebairn, J. W., and J. W. Zillman, 2002: Economic benefits of meteorological services. Meteorological Applications 9(1), 33-44. https://doi.org/10.1017/S1350482702001044
  14. Frere, M., and G. Popov, 1979: Agrometeorological crop monitoring and forecasting, FAO.
  15. Gleason, M. L., S. K. Parker, R. E. Pitblado, R. X. Latin, D. Speranzini, R. V. Hazzard, M. J. Maletta, W. P. Cowgill, and D. L. Biederstedt, 1997: Validation of a commercial system for remote estimation of wetness duration. Plant Disease 81(7), 825-829. https://doi.org/10.1094/PDIS.1997.81.7.825
  16. Gubbi, J., R. Buyya, S. Marusic, and M. Palaniswami, 2013: Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems 29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
  17. Gutierrez, J., J. F. Villa-Medina, A. Nieto-Garibay, and M. A. Porta-Gandara, 2014: Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement 63(1), 166-176. https://doi.org/10.1109/TIM.2013.2276487
  18. Hansen, J. W., A. Potgieter, and M. K. Tippett, 2004: Using a general circulation model to forecast regional wheat yields in northeast Australia. Agricultural and Forest Meteorology 127(1-2), 77-92. https://doi.org/10.1016/j.agrformet.2004.07.005
  19. Heble, S., A. Kumar, K. V. V. D. Prasad, S. Samirana, P. Rajalakshmi, and U. B. Desai, 2018: A low power IoT network for smart agriculture. 609-614.
  20. Hollis, D., M. McCarthy, M. Kendon, T. Legg, and I. Simpson, 2019: HadUK-Grid-A new UK dataset of gridded climate observations. Geoscience Data Journal.
  21. Hyun, S., and K. S. Kim, 2016: Assessment of the Angstrom-Prescott Coefficients for estimation of solar radiation in Korea. Korean Journal of Agricultural and Forest Meteorology 18(4), 221-232. https://doi.org/10.5532/KJAFM.2016.18.4.221
  22. Hyun, S., and K. S. Kim, 2017: Estimation of heading eate for rice cultivars using ORYZA (v3). Korean Journal of Agricultural and Forest Meteorology 19(4), 246-251. https://doi.org/10.5532/KJAFM.2017.19.4.246
  23. Ivanov, S., K. Bhargava, and W. Donnelly, 2015: Precision farming: Sensor analytics. IEEE Intelligent Systems 30(4), 76-80. https://doi.org/10.1109/MIS.2015.67
  24. Jang, K., S. Kang, J. Kimball, and S. Hong, 2014: Retrievals of all-weather daily air temperature using MODIS and AMSR-E data. Remote Sensing 6(9), 8387-8404. https://doi.org/10.3390/rs6098387
  25. Jensen, A. L., P. S. Boll, I. Thysen, and B. K. Pathak, 2000: $Pl@nteInfo^{R}$ - a web-based system for personalised decision support in crop management. Computers and Electronics in Agriculture 25(3), 271-293. https://doi.org/10.1016/S0168-1699(99)00074-5
  26. Jha, P. K., P. Athanasiadis, S. Gualdi, A. Trabucco, V. Mereu, V. Shelia, and G. Hoogenboom, 2019: Using daily data from seasonal forecasts in dynamic crop models for yield prediction: A case study for rice in Nepal's Terai. Agricultural and Forest Meteorology 265, 349-358. https://doi.org/10.1016/j.agrformet.2018.11.029
  27. Kang, D., S. Hyun, and K. S. Kim, 2019: Development of a deep neural network model to estimate solar radiation using temperature and precipitation. Korean Journal of Agricultural and Forest Meteorology 21(2), 85-96. https://doi.org/10.5532/KJAFM.2019.21.2.85
  28. Kendon, M., M. McCarthy, S. Jevrejeva, A. Matthews, and T. Legg, 2019: State of the UK climate 2018. International Journal of Climatology 39(S1), 1-55.
  29. Kim, D.-J., and J. I. Yun, 2013: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: 2. Refining the distribution of precipitation amount. Korean Journal of Agricultural and Forest Meteorology 15(3), 171-177. https://doi.org/10.5532/KJAFM.2013.15.3.171
  30. Kim, K. S., 2002: Optimal weather variables for estimation of leaf wetness duration using an empirical method. Korean Journal of Agricultural and Forest Meteorology 4(1), 23-28.
  31. Kim, K. S., 2011: Impact assessment of climate change by using cloud computing. Korean Journal of Agricultural and Forest Meteorology 13(2), 101-108. https://doi.org/10.5532/KJAFM.2010.13.2.101
  32. Kim, K. S., S. E. Taylor, and M. L. Gleason, 2004: Development and validation of a leaf wetness duration model using a fuzzy logic system. Agricultural and Forest Meteorology 127(1-2), 53-64. https://doi.org/10.1016/j.agrformet.2004.07.006
  33. Kim, K. S., S. E. Taylor, M. L. Gleason, and K. J. Koehler, 2002: Model to enhance site-specific estimation of leaf wetness duration. Plant Disease 86(2), 179-185. https://doi.org/10.1094/PDIS.2002.86.2.179
  34. Kim, K. S., S. E. Taylor, M. L. Gleason, F. W. Nutter Jr, L. B. Coop, W. F. Pfender, R. C. Seem, P. C. Sentelhas, T. J. Gillespie, and A. Dalla Marta, 2010: Spatial portability of numerical models of leaf wetness duration based on empirical approaches. Agricultural and Forest Meteorology 150(7-8), 871-880. https://doi.org/10.1016/j.agrformet.2010.02.006
  35. Kim, S.-O., D.-J. Kim, J.-H. Kim, and J. I. Yun, 2013: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: I. Correction for local temperature under the inversion condition. Korean Journal of Agricultural and Forest Meteorology 15(2), 76-84. https://doi.org/10.5532/KJAFM.2013.15.2.076
  36. Kim, Y., R. G. Evans, and W. M. Iversen, 2008: Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE transactions on instrumentation and measurement 57(7), 1379-1387. https://doi.org/10.1109/TIM.2008.917198
  37. Kulau, U., S. Schildt, S. Rottmann, B. Gernert, and L. Wolf, 2015: Demo: PotatoNet -- Robust outdoor testbed for WSNs. 59-60.
  38. Langendoen, K., A. Baggio, and O. Visser, 2006: Murphy loves potatoes: Experiences from a pilot sensor network deployment in precision agriculture. Proceedings 20th IEEE international parallel & distributed processing symposium, IEEE, 8pp.
  39. Lee, C.-K., J. Kim, and K. S. Kim, 2015: Development and application of a weather data service client for preparation of weather input files to a crop model. Computers and Electronics in Agriculture 114, 237-246. https://doi.org/10.1016/j.compag.2015.03.021
  40. Lee, M.-h., K.-b. Eom, H.-j. Kang, C.-s. Shin, and H. Yoe, 2008: Design and implementation of wireless sensor network for ubiquitous glass houses. 397-400.
  41. Lee, M., J. Hwang, and H. Yoe, 2013: Agricultural production system based on IoT. 833-837.
  42. Madeira, A. C., K. S. Kim, S. E. Taylor and M. L. Gleason, 2002: A simple cloud-based energy balance model to estimate dew. Agricultural and Forest Meteorology 111(1), 55-63. https://doi.org/10.1016/S0168-1923(02)00004-7
  43. Mekala, M. S., and P. Viswanathan, 2019: CLAY-MIST: IoT-cloud enabled CMM index for smart agriculture monitoring system. Measurement 134, 236-244. https://doi.org/10.1016/j.measurement.2018.10.072
  44. Mesas-Carrascosa, F. J., D. Verdú Santano, J. E. Merono, M. Sanchez de la Orden, and A. Garcia-Ferrer, 2015: Open source hardware to monitor environmental parameters in precision agriculture. Biosystems Engineering 137, 73-83. https://doi.org/10.1016/j.biosystemseng.2015.07.005
  45. Minet, J., Y. Curnel, A. Gobin, J.-P. Goffart, F. Melard, B. Tychon, J. Wellens, and P. Defourny, 2017: Crowdsourcing for agricultural applications: A review of uses and opportunities for a farmsourcing approach. Computers and Electronics in Agriculture 142, 126-138. https://doi.org/10.1016/j.compag.2017.08.026
  46. Muller, C., L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, and R. Leigh, 2015: Crowdsourcing for climate and atmospheric sciences: current status and future potential. International Journal of Climatology 35(11), 3185-3203. https://doi.org/10.1002/joc.4210
  47. Nikolidakis, S. A., D. Kandris, D. D. Vergados, and C. Douligeris, 2015: Energy efficient automated control of irrigation in agriculture by using wireless sensor networks. Computers and Electronics in Agriculture 113, 154-163. https://doi.org/10.1016/j.compag.2015.02.004
  48. Oh, J. H., 2018: A Study on the Public-private Governance on Risk Management for the 4th Industrial Revolution - Focusing on the Role of Private Experts in the Early Warning System. Crisis and Emergency Management: Theory and Praxis 14(1), 57-75. https://doi.org/10.14251/crisisonomy.2018.14.1.57
  49. Ojha, T., S. Misra, and N. S. Raghuwanshi, 2015: Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture 118, 66-84. https://doi.org/10.1016/j.compag.2015.08.011
  50. Park, J. S., Y. A. Seo, K. R. Kim, and J.-C. Ha, 2018: Evaluating the prediction models of leaf wetness duration for citrus orchards in Jeju, South Korea. Korean Journal of Agricultural and Forest Meteorology 20(3), 262-276. https://doi.org/10.5532/KJAFM.2018.20.3.262
  51. Pierce, F. J., and T. V. Elliott, 2008: Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronics in Agriculture 61(1), 32-43. https://doi.org/10.1016/j.compag.2007.05.007
  52. Popovic, T., N. Latinovic, A. Pesic, Z. Zecevic, B. Krstajic, and S. Djukanovic, 2017: Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Computers and Electronics in Agriculture 140, 255-265. https://doi.org/10.1016/j.compag.2017.06.008
  53. Prescott, J. A., 1940: Evaporation from a water surface in relation to solar radiation. Transactions of the royal society of Royal Society of South Austral alia 46, 114-118.
  54. Rad, C.-R., O. Hancu, I.-A. Takacs, and G. Olteanu, 2015: Smart monitoring of potato crop: a cyber-physical system architecture model in the field of precision agriculture. Agriculture and Agricultural Science Procedia 6, 73-79. https://doi.org/10.1016/j.aaspro.2015.08.041
  55. Reche, A., S. Sendra, J. R. Diaz, and J. Lloret, 2014: A smart M2M deployment to control the agriculture irrigation, International conference on ad-hoc networks and wireless, Springer, 139-151.
  56. Rosenzweig, C., J. Elliott, D. Deryng, A. C. Ruane, C. Muller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T. A. M. Pugh, E. Schmid, E. Stehfest, H. Yang, and J. W. Jones, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences 111(9), 3268-3273. https://doi.org/10.1073/pnas.1222463110
  57. Ruane, A. C., R. Goldberg, and J. Chryssanthacopoulos, 2015: Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology 200, 233-248. https://doi.org/10.1016/j.agrformet.2014.09.016
  58. Running, S. W., R. R. Nemani, F. A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto, 2004: A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6), 547-560. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
  59. Song, J., S.-J. Lee, M. Kang, M. Moon, J.-H. Lee, and J. Kim, 2015: High-resolution numerical simulations with WRF/Noah-MP in Cheongmicheon farmland in Korea during the 2014 special observation period. Korean Journal of Agricultural and Forest Meteorology 17(4), 384-398. https://doi.org/10.5532/KJAFM.2015.17.4.384
  60. Srbinovska, M., C. Gavrovski, V. Dimcev, A. Krkoleva, and V. Borozan, 2015: Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production 88, 297-307. https://doi.org/10.1016/j.jclepro.2014.04.036
  61. Stefanski, R., and M. V. K. Sivakumar, 2007: World AgroMeterological Information Service (WAMIS). Meteorological Applications 13(S1).
  62. Stoces, M., J. Vanek, J. Masner, and J. Pavlik, 2016: Internet of Things (IoT) in agriculture - Selected aspects. Agris on-line Papers in Economics and Informatics VIII(1), 83-88. https://doi.org/10.7160/aol.2016.080108
  63. Tadesse, G., and G. Bahiigwa, 2015: Mobile phones and farmers' marketing decisions in Ethiopia. World development 68, 296-307. https://doi.org/10.1016/j.worlddev.2014.12.010
  64. Thornton, P. E., M. M. Thornton, B. W. Mayer, N. Wilhelmi, Y. Wei, R. Devarakonda, and R. Cook, 2012: Daymet: Daily surface weather on a 1 km grid for North America, 1980-2008. Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center for Biogeochemical Dynamics (DAAC).
  65. Tzounis, A., N. Katsoulas, T. Bartzanas, and C. Kittas, 2017: Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering 164, 31-48. https://doi.org/10.1016/j.biosystemseng.2017.09.007
  66. Vasisht, D., Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. Sinha, A. Kapoor, M. Sudarshan, and S. Stratman, 2017: Farmbeats: An iot platform for data-driven agriculture. 14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17), 515-529.
  67. Vuran, M. C., A. Salam, R. Wong, and S. Irmak, 2018: Internet of underground things: Sensing and communications on the field for precision agriculture. 586-591.
  68. Yoo, B. H., K. S. Kim, and J. Lee, 2019: The use of MODIS atmospheric products to estimate cooling degree days at weather stations in South and North Korea. Korean Journal of Agricultural and Forest Meteorology 21(2), 97-109. https://doi.org/10.5532/KJAFM.2019.21.2.97
  69. Yun, J.-I., 2010: Agroclimatic maps augmented by a GIS technology. Korean Journal of Agricultural and Forest Meteorology 12(1), 63-73. https://doi.org/10.5532/KJAFM.2010.12.1.063
  70. Yun, J. I., S.-O. Kim, J.-H. Kim, and D.-J. Kim, 2013: User-specific agrometeorological service to local farming community: a case study. Korean Journal of Agricultural and Forest Meteorology 15(4), 320-331. https://doi.org/10.5532/KJAFM.2013.15.4.320
  71. Zhao, G., S. Siebert, A. Enders, E. E. Rezaei, C. Yan, and F. Ewert, 2015: Demand for multi-scale weather data for regional crop modeling. Agricultural and Forest Meteorology 200, 156-171. https://doi.org/10.1016/j.agrformet.2014.09.026
  72. Zhu, W., A. Lu, S. Jia, J. Yan, and R. Mahmood, 2017: Retrievals of all-weather daytime air temperature from MODIS products. Remote Sensing of Environment 189, 152-163. https://doi.org/10.1016/j.rse.2016.11.011