DOI QR코드

DOI QR Code

Biocontrol of Citrus Canker Disease Caused by Xanthomonas citri subsp. citri Using an Endophytic Bacillus thuringiensis

  • Islam, Md. Nurul (Department of Biotechnology, Yeungnam University) ;
  • Ali, Md. Sarafat (Department of Biotechnology, Yeungnam University) ;
  • Choi, Seong-Jin (Department of Biotechnology, Catholic University of Daegu) ;
  • Hyun, Jae-Wook (Citrus Research Station, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Baek, Kwang-Hyun (Department of Biotechnology, Yeungnam University)
  • 투고 : 2019.03.20
  • 심사 : 2019.08.12
  • 발행 : 2019.10.01

초록

Citrus canker is a devastating disease of citrus caused by Xanthomonas citri subsp. citri (Xcc). A total of 134 endophytic bacteria were isolated from various gymnospermic and angiospermic plants. They were screened for their antagonistic activities against three wild-type and six streptomycin-resistant Xcc strains. TbL-22 and TbL-26, both later identified as Bacillus thuringiensis, inhibited all the wild and resistant Xcc strains. TbL-22 exerted the highest antagonistic activity against XccW3 and XccM6 with inhibition zones of $20.64{\pm}0.69$ and $19.91{\pm}0.87mm$, respectively. Similarly ethyl acetate extract of TbL-22 showed highest inhibition zones $15.31{\pm}2.08$ and $19.37{\pm}3.17mm$ against XccW3 and XccM6, respectively. TbL-22 reduced canker incidence on infected leaves by 64.05% relative to positive controls. Scanning electron microscopy revealed that the cell membranes of Xcc treated with ethyl acetate extract of TbL-22 were ruptured, lysed, and swollen. B. thuringiensis TbL-22 can effectively and sustainably controls streptomycin-resistant citrus canker.

키워드

참고문헌

  1. Backman, P. A. and Sikora, R. A. 2008. Endophytes: an emerging tool for biological control. Biol. Control 46:1-3. https://doi.org/10.1016/j.biocontrol.2008.03.009
  2. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319. https://doi.org/10.1104/pp.103.028712
  3. Bajpai, V. K., Al-Reza, S. M., Choi, U. K., Lee, J. H. and Kang, S. C. 2009. Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu. Food Chem. Toxicol. 47:1876-1883. https://doi.org/10.1016/j.fct.2009.04.043
  4. Behlau, F., Canteros, B. I., Minsavage, G. V., Jones, J. B. and Graham, J. H. 2011. Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Appl. Environ. Microbiol. 77:4089-4096. https://doi.org/10.1128/AEM.03043-10
  5. Berg, G., Eberl, L. and Hartmann, A. 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 7:1673-1685. https://doi.org/10.1111/j.1462-2920.2005.00891.x
  6. Brown, A. E. and Soepena, H. 1994. Pathogenicity of Colletotrichum acutatum and C. gloeosporioides on Hevea spp. Mycol. Res. 98:264-266. https://doi.org/10.1016/S0953-7562(09)80453-X
  7. Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T. and Ramakrishnan, V. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interaction with antibiotics. Nature 407:340-348. https://doi.org/10.1038/35030019
  8. Chattopadhyay, A., Bhatnagar, N. B. and Bhatnagar, R. 2004. Bacterial insecticidal toxins. Crit. Rev. Microbiol. 30:33-54. https://doi.org/10.1080/10408410490270712
  9. Chen, C., Bauske, E. M., Musson, G., Rodriguezkabana, R. and Kloepper, J. W. 1995. Biological control of Fusarium wilt on cotton by use of endophytric bacteria. Biol. Control 5:83-91. https://doi.org/10.1006/bcon.1995.1009
  10. Cherif, A., Rezgui, W., Raddadi, N., Daffonchio, D. and Boudabous, A. 2008. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. entomocidus HD110. Microbiol. Res. 163:684-692. https://doi.org/10.1016/j.micres.2006.10.005
  11. Chithrashree, Udayashankar, A. C., Chandra Nayaka, S., Reddy, M. S. and Srinivas, C. 2011. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol. Control 59:114-122. https://doi.org/10.1016/j.biocontrol.2011.06.010
  12. Das, A. K. and Singh, S. 1999. Management of bacterial canker in acid lime. Intensive Agric. 36:28-29.
  13. Das, A. K. 2003. Citrus canker: a review. J. Appl. Hortic. 5:52-60. https://doi.org/10.37855/jah.2003.v05i01.15
  14. Das, A. K. and Singh, S. 2000. Management of acid lime canker by using chemicals with compatible cultural practices. In: Hitech Citrus Management: Proceedings of the International Symposium Citriculture, eds. by S. P. Ghosh and S. Singh, pp. 1054-1056. Indian Society of Citriculture and National Research Centre for Citrus, Nagpur, India.
  15. Das, A. K. and Singh, S. 2001. Managing citrus bacterial diseases in the state of Maharashtra. Indian Hortic. 46:11-13.
  16. Das, R., Mondal, B., Mondal, P., Khatua, D. C. and Mukherjee, N. 2014. Biological management of citrus canker on acid lime through Bacillus subtilis (S-12) in West Bengal, India. J. Biopest. 7:38-41.
  17. De Goes, K. C. G. P., de Castro Fisher, M. L., Cattelan, A. J., Nogueira, M. A., de Carvalho, C. G. P. and de Oliveira, A. L. M. 2012. Biochemical and molecular characterization of high population density bacteria isolated from sunflower. J. Microbiol. Biotechnol. 22:437-447. https://doi.org/10.4014/jmb.1109.09007
  18. De Oliveira Costa, L. E., de Queiroz, M. V., Borges, A. C., de Moraes, C. A. and de Araujo, E. F. 2012. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz. J. Microbiol. 43:1562-1575. https://doi.org/10.1590/S1517-83822012000400041
  19. Dong, Y.-H., Gusti, A. R., Zhang, Q., Xu, J.-L. and Zhang, L.-H. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68:1754-1759. https://doi.org/10.1128/AEM.68.4.1754-1759.2002
  20. Gottwald, T. R., Hughes, G., Graham, J. H., Sun, X. and Riley, T. 2001. The citrus canker epidemic in Florida: the scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91:30-34. https://doi.org/10.1094/PHYTO.2001.91.1.30
  21. Graham, J. H., Leite, R. P., Yonce, H. D. and Myers, M. 2008. Streptomycin controls citrus canker on sweet orange in Brazil and reduces risk of copper burn on grapefruit in Florida. Proc. Fla. State Hortic. Soc. 121:118-123.
  22. Hallmann, J., Quadt-Hallmann, A., Miller, W. G., Sikora, R. A. and Lindow, S. E. 2002. Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91:415-422. https://doi.org/10.1094/phyto.2001.91.4.415
  23. Huang, T.-P., Tzeng, D. D.-S., Wong, A. C. L., Chen, C.-H., Lu, K.-M., Lee, Y.-H., Huang, W.-D., Hwang, B.-F. and Tzeng, K.-C. 2012. DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS ONE 7:e42124. https://doi.org/10.1371/journal.pone.0042124
  24. Hyun, J.-W., Kim, H.-J., Yi, P.-H., Hwang, R.-Y. and Park, E.-W. 2012. Mode of action of streptomycin resistance in the citrus canker pathogen (Xanthomonas smithii subsp. citri) in Jeju Island. Plant Pathol. J. 28:207-211. https://doi.org/10.5423/PPJ.2012.28.2.207
  25. Jalan, N., Kumar, D., Yu, F., Jones, J. B., Graham, J. H. and Wang, N. 2013. Complete genome sequence of Xanthomonas citri subsp. citri strain Aw12879, a restricted-host-range citrus canker-causing bacterium. Genome Announc. 1:e00235-13.
  26. Jouzani, G. S., Valijanian, E. and Sharafi, R. 2017. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 101:2691-2711. https://doi.org/10.1007/s00253-017-8175-y
  27. Keerthi, D., Nair, R. A. and Prasath, D. 2016. Molecular phylogenetics and anti-pythium activity of endophytes from rhizomes of wild ginger congener, Zingiber zerumbet Smith. World J. Microbiol. Biotechnol. 32:41. https://doi.org/10.1007/s11274-015-1998-8
  28. Kim, B. S., Moon, S. S. and Hwang, B. K. 1999. Isolation, identification and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can. J. Bot. 77:850-858. https://doi.org/10.1139/b99-044
  29. Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R. and Chi, Y.-T. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97:942-949. https://doi.org/10.1111/j.1365-2672.2004.02356.x
  30. Kloepper, J. W. and Beauchamp, C. J. 1992. A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38:1219-1232. https://doi.org/10.1139/m92-202
  31. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  32. Li, H.-Y., Wei, D.-Q., Shen, M. and Zhou, Z.-P. 2012. Endophytes and their role in phytoremediation. Fungal Divers. 54:11-18. https://doi.org/10.1007/s13225-012-0165-x
  33. Lin, D., Qu, L. J., Gu, H. and Chen, Z. 2001. A 3.1-kb genomic fragment of Bacillus subtilis encodes the protein inhibiting growth of Xanthomonas oryzae pv. oryzae. J. Appl. Microbiol. 91:1044-1050. https://doi.org/10.1046/j.1365-2672.2001.01475.x
  34. Liu, Y. Q., Heying, E. and Tanumihardjo, S. A. 2012. History, global distribution, and nutritional importance of citrus fruits. Compr. Rev. Food Sci. Food Saf. 11:530-545. https://doi.org/10.1111/j.1541-4337.2012.00201.x
  35. Martinez-Medina, A., Fernandez, I., Sanchez-Guzman, M. J., Jung, S. C., Pascual, J. A. and Pozo, M. J. 2013. Deciphering the hormonal signaling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front. Plant Sci. 4:206. https://doi.org/10.3389/fpls.2013.00206
  36. McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  37. Mingma, R., Pathom-aree, W., Trakulnaleamsai, S., Thamchaipenet, A. and Duangmal, K. 2014. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J. Microbiol. Biotechnol. 30:271-280. https://doi.org/10.1007/s11274-013-1451-9
  38. Nam, H.-S., Yang, H.-J., Oh, B. J., Anderson, A. J. and Kim, Y. C. 2016. Biological control potential of Bacillus amyloliquefaciens KB3 isolated from the feces of Allomyrina dichotoma larvae. Plant Pathol. J. 32:273-280. https://doi.org/10.5423/PPJ.NT.12.2015.0274
  39. Patra, J. K., Das, G. and Baek, K.-H. 2015. Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and Salmonella typhimurium. Bot. Stud. 56:13. https://doi.org/10.1186/s40529-015-0093-7
  40. Paul, D. K. and Shaha, R. K. 2004. Nutrients, vitamins and minerals content in common citrus fruits in the northern region of Bangladesh. Pak. J. Biol. Sci. 7:238-242. https://doi.org/10.3923/pjbs.2004.238.242
  41. Quadt-Hallman, A., Kloepper, J. W. and Benhamou, N. 1997. Bacterial endophytes in cotton: mechanisms of entering the plant. Can. J. Microbiol. 43:557-582.
  42. Quispel, A. 1992. A search for signals in endophytic microorganisms. In: Molecular signals in plant-microbe communications, ed. by D. P. S. Verma, pp 471-490. CRC Press, Boca Raton, FL.
  43. Raddadi, N., Belaouis, A., Tamagnini, I., Hansen, B. M., Hendriksen, N. B., Boudabous, A., Cherif, A. and Daffonchio, D. 2009. Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. J. Basic. Microbiol. 49:293-303. https://doi.org/10.1002/jobm.200800182
  44. Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E. and Aruoma, O. I. 2010. Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: potential prophylactic ingredients for functional foods application. Toxicology 278:75-87. https://doi.org/10.1016/j.tox.2010.01.012
  45. Reyes-Ramirez, A., Escudero-Abarca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M. and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69:M131-M134. https://doi.org/10.1111/j.1365-2621.2004.tb06353.x
  46. Roh, E., Lee, S., Lee, Y., Ra, D., Choi, J., Moon, E. and Heu, S. 2009. Diverse antibacterial activity of Pectobacterium carotovorum subsp. carotovorum isolated in Korea. J. Microbiol. Biotechnol. 19:42-50. https://doi.org/10.4014/jmb.0803.209
  47. Roh, J. Y., Choi, J. Y., Li, M. S., Jin, B. R. and Je, Y. H. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17:547-559.
  48. Rosenblueth, M. and Martinez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact. 19:827-837. https://doi.org/10.1094/MPMI-19-0827
  49. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775-806. https://doi.org/10.1128/MMBR.62.3.775-806.1998
  50. Shang, H., Chen, J., Handelsman, J. and Goodman, R. M. 1999. Behavior of Pythium torulosum zoospores during their interaction with tobacco roots and Bacillus cereus. Curr. Microbiol. 38:199-204. https://doi.org/10.1007/PL00006787
  51. Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J. and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60:2023-2030. https://doi.org/10.1128/AEM.60.6.2023-2030.1994
  52. Sturz, A. V. and Nowak, J. 2000. Endophytic communities of rhizobacteria and the strategies required creating yield enhancing associations with crops. Appl. Soil Ecol. 15:183-190. https://doi.org/10.1016/S0929-1393(00)00094-9
  53. Sultana, R. and Kim, K. 2016. Bacillus thuringiensis C25 suppresses popcorn disease caused by Ciboria shiraiana in mulberry (Morus australis L.). Biocontrol Sci. Technol. 26:145-162. https://doi.org/10.1080/09583157.2015.1084999
  54. Susilowati, R., Sabdono, A. and Widowati, I. 2015. Isolation and characterization of bacteria associated with brown algae Sargassum spp. from Panjang Island and their antibacterial activities. Proc. Environ. Sci. 23:240-246. https://doi.org/10.1016/j.proenv.2015.01.036
  55. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetic analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  56. Tan, X., Huang, S., Ren, J., Yan, W. and Cen, Z. 2007. Characterization of an endophytic bacterium strain Bc51 suppressing citrus canker. Acta Phytopathol. Sin. 37:9-17. https://doi.org/10.3321/j.issn:0412-0914.2007.01.002
  57. Tao, A., Pang, F., Huang, S., Yu, G., Li, B. and Wang, T. 2014. Characterization of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Sci. Technol. 24:901-924. https://doi.org/10.1080/09583157.2014.904502
  58. Toure, Y., Ongena, M., Jacques, P., Guiro, A. and Thonart, P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96:1151-1160. https://doi.org/10.1111/j.1365-2672.2004.02252.x
  59. Van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
  60. Voloudakis, A. E., Reignier, T. M. and Cooksey, D. A. 2005. Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl. Environ. Microbiol. 71:782-789. https://doi.org/10.1128/AEM.71.2.782-789.2005
  61. Webber, H. J. 1967. History and development of the Citrus industry. In: The Citrus industry, Vol. I, eds. by W. Reuther, L. D. Batchelor and H. J. Webber, pp. 1-39. University of California Press, Berkely, CA, USA.
  62. Wei, G., Kloepper, J. W. and Tuzun, S. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221-224. https://doi.org/10.1094/Phyto-86-221
  63. Yang, H. L., Sun, X. L., Song, W. and Wang, Y. S. 2001. Studies on the rice endophytic bacteria Entetobacter cloacae MR12's identification and its effects of nitrogen fixation and biological control to plant disease. Acta Phytopathol. Sin. 31:92-93. https://doi.org/10.3321/j.issn:0412-0914.2001.01.016
  64. Zhou, Y., Choi, Y.-L., Sun, M. and Yu, Z. 2008. Novel roles of Bacillus thuringiensis to control plant diseases. Appl. Microbiol. Biotechnol. 80:563-572. https://doi.org/10.1007/s00253-008-1610-3