DOI QR코드

DOI QR Code

Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae

  • Lee, Chaeyeong (Department of Microbiology, Pusan National University) ;
  • Mannaa, Mohamed (Department of Microbiology, Pusan National University) ;
  • Kim, Namgyu (Department of Microbiology, Pusan National University) ;
  • Kim, Juyun (Department of Microbiology, Pusan National University) ;
  • Choi, Yeounju (Department of Microbiology, Pusan National University) ;
  • Kim, Soo Hyun (Department of Microbiology, Pusan National University) ;
  • Jung, Boknam (Department of Applied Biology, Dong-A University) ;
  • Lee, Hyun-Hee (Department of Microbiology, Pusan National University) ;
  • Lee, Jungkwan (Department of Applied Biology, Dong-A University) ;
  • Seo, Young-Su (Department of Microbiology, Pusan National University)
  • Received : 2019.04.29
  • Accepted : 2019.07.02
  • Published : 2019.10.01

Abstract

The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.

Keywords

References

  1. Beher, M. G. and Schnaitman, C. A. 1981. Regulation of the OmpA outer membrane protein of Escherichia coli. J. Bacteriol. 147:972-985. https://doi.org/10.1128/JB.147.3.972-985.1981
  2. Berry, M. C., McGhee, G. C., Zhao, Y. and Sundin, G. W. 2009. Effect of a waaL mutation on lipopolysaccharide composition, oxidative stress survival, and virulence in Erwinia amylovora. FEMS Microbiol. Lett. 291:80-87. https://doi.org/10.1111/j.1574-6968.2008.01438.x
  3. Castelli, M. E., Fedrigo, G. V., Clementin, A. L., Ielmini, M. V., Feldman, M. F. and Vescovi, E. G. 2008. Enterobacterial common antigen integrity is a checkpoint for flagellar biogenesis in Serratia marcescens. J. Bacteriol. 190:213-220. https://doi.org/10.1128/JB.01348-07
  4. Chen, R., Barphagha, I. K. and Ham, J. H. 2015. Identification of potential genetic components involved in the deviant quorumsensing signaling pathways of Burkholderia glumae through a functional genomics approach. Front. Cell. Infect. Microbiol. 5:22. https://doi.org/10.3389/fcimb.2015.00022
  5. Chun, H., Choi, O., Goo, E., Kim, N., Kim, H., Kang, Y., Kim, J., Moon, J. S. and Hwang, I. 2009. The quorum sensingdependent gene katG of Burkholderia glumae is important for protection from visible light. J. Bacteriol. 191:4152-4157. https://doi.org/10.1128/JB.00227-09
  6. Denny, T. P. 1995. Involvement of bacterial polysaccharides in plant pathogenesis. Annu. Rev. Phytopathol. 33:173-197. https://doi.org/10.1146/annurev.py.33.090195.001133
  7. Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47:1530-1540. https://doi.org/10.1093/pcp/pcl019
  8. Dong, H., Tang, X., Zhang, Z. and Dong, C. 2017. Structural insight into lipopolysaccharide transport from the gramnegative bacterial inner membrane to the outer membrane. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1461-1467. https://doi.org/10.1016/j.bbalip.2017.08.003
  9. Dow, J. M., Osbourn, A. E., Wilson, T. J. G. and Daniels, M. J. 1995. A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Mol. Plant-Microbe Interact. 8:768-777. https://doi.org/10.1094/MPMI-8-0768
  10. Finnegan, T., Steenkamp, P. A., Piater, L. A. and Dubery, I. A. 2016. The lipopolysaccharide-induced metabolome signature in Arabidopsis thaliana reveals dynamic reprogramming of phytoalexin and phytoanticipin pathways. PLoS ONE 11:e0163572. https://doi.org/10.1371/journal.pone.0163572
  11. Francez-Charlot, A., Laugel, B., Van Gemert, A., Dubarry, N., Wiorowski, F., Castanie-Cornet, M.-P., Gutierrez, C. and Cam, K. 2003. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol. Microbiol. 49:823-832. https://doi.org/10.1046/j.1365-2958.2003.03601.x
  12. Gronow, S., Brabetz, W. and Brade, H. 2000. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur. J. Biochem. 267:6602-6611. https://doi.org/10.1046/j.1432-1327.2000.01754.x
  13. Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12:329-339. https://doi.org/10.1111/j.1364-3703.2010.00676.x
  14. Hamad, M. A., Di Lorenzo, F., Molinaro, A. and Valvano, M. A. 2012. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia. Mol. Microbiol. 85:962-974. https://doi.org/10.1111/j.1365-2958.2012.08154.x
  15. He, Y.-W., Wu, J., Cha, J.-S. and Zhang, L.-H. 2010. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol. 10:187. https://doi.org/10.1186/1471-2180-10-187
  16. Hendrick, C. A. and Sequeira, L. 1984. Lipopolysaccharidedefective mutants of the wilt pathogen Pseudomonas solanacearum. Appl. Environ. Microbiol. 48:94-101. https://doi.org/10.1128/AEM.48.1.94-101.1984
  17. Holst, O. 2007. The structures of core regions from enterobacterial lipopolysaccharides: an update. FEMS Microbiol. Lett. 271:3-11. https://doi.org/10.1111/j.1574-6968.2007.00708.x
  18. Huang, Y.- H., Ferrieres, L. and Clarke, D. J. 2006. The role of the Rcs phosphorelay in Enterobacteriaceae. Res. Microbiol. 157:206-212. https://doi.org/10.1016/j.resmic.2005.11.005
  19. Jang, M. S., Goo, E., An, J. H., Kim, J. and Hwang, I. 2014. Quorum sensing controls flagellar morphogenesis in Burkholderia glumae. PLoS ONE 9:e84831. https://doi.org/10.1371/journal.pone.0084831
  20. Jeong, Y., Cheong, H., Choi, O., Kim, J. K., Kang, Y., Kim, J., Lee, S., Koh, S., Moon, J. S. and Hwang, I. 2011. An HrpBdependent but type III-independent extracellular aspartic protease is a virulence factor of Ralstonia solanacearum. Mol. Plant Pathol. 12:373-380. https://doi.org/10.1111/j.1364-3703.2010.00679.x
  21. Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87:890-895. https://doi.org/10.1094/PDIS.2003.87.8.890
  22. Jung, B., Park, J., Kim, N., Li, T., Kim, S., Bartley, L. E., Kim, J., Kim, I., Kang, Y., Yun, K., Choi, Y., Lee, H.-H., Ji, S., Lee, K. S., Kim, B. Y., Shon, J. C., Kim, W. C., Liu, K.-H., Yoon, D., Kim, S., Seo, Y.-S. and Lee, J. 2018. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9:31. https://doi.org/10.1038/s41467-017-02430-2
  23. Kalogeraki, V. S. and Winans, S. C. 1997. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69-75. https://doi.org/10.1016/S0378-1119(96)00778-0
  24. Keen, N. T., Tamaki, S., Kobayashi, D. and Trollinger, D. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191-197. https://doi.org/10.1016/0378-1119(88)90117-5
  25. Kim, J. K., Jang, H. A., Kim, M. S., Cho, J. H., Lee, J., Di Lorenzo, F., Sturiale, L., Silipo, A., Molinaro, A. and Lee, B. L. 2017. The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris. J. Biol. Chem. 292:19226-19237 https://doi.org/10.1074/jbc.M117.813832
  26. Kim, J., Kang, Y., Choi, O., Jeong, Y., Jeong, J.-E., Lim, J. Y., Kim, M., Moon, J. S., Suga, H. and Hwang, I. 2007. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol. Microbiol. 64:165-179. https://doi.org/10.1111/j.1365-2958.2007.05646.x
  27. Kim, J., Kim, J.-G., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T. and Hwang, I. 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54:921-934. https://doi.org/10.1111/j.1365-2958.2004.04338.x
  28. Kim, J., Mannaa, M., Kim, N., Lee, C., Kim, J., Park, J., Lee, H.-H. and Seo, Y.-S. 2018. The roles of two hfq genes in the virulence and stress resistance of Burkholderia glumae. Plant Pathol. J. 34:412-425. https://doi.org/10.5423/PPJ.OA.06.2018.0097
  29. King, K. Y., Horenstein, J. A. and Caparon, M. G. 2000. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol. 182:5290-5299. https://doi.org/10.1128/JB.182.19.5290-5299.2000
  30. Kong, Q., Yang, J., Liu, Q., Alamuri, P., Roland, K. L. and Curtiss, R. 3rd. 2011. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium. Infect. Immun. 79:4227-4239. https://doi.org/10.1128/IAI.05398-11
  31. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  32. Kutschera, A. and Ranf, S. 2018. The multifaceted functions of lipopolysaccharide in plant-bacteria interactions. Biochimie 159:93-98. https://doi.org/10.1016/j.biochi.2018.07.028
  33. Lee, J., Park, J., Kim, S., Park, I. and Seo, Y.-S. 2016. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 17:65-76. https://doi.org/10.1111/mpp.12262
  34. Lelis, T., Peng, J., Barphagha, I., Chen, R. and Ham, J. H. 2019. The virulence function and regulation of the metalloprotease gene prtA in the plant-pathogenic bacterium, Burkholderia glumae. Mol. Plant-Microbe Interact. 32:841-852. https://doi.org/10.1094/MPMI-11-18-0312-R
  35. Levene, H. 1960. Robust tests for equality of variances. In: Contributions to probability and statistics: essays in honor of Harold Hotelling, eds. by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow and H. B. Mann, pp. 278-292. Stanford University Press, Palo Alto, CA, USA.
  36. Li, J. and Wang, N. 2011. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol. 12:381-396. https://doi.org/10.1111/j.1364-3703.2010.00681.x
  37. Loutet, S. A., Flannagan, R. S., Kooi, C., Sokol, P. A. and Valvano, M. A. 2006. A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. J. Bacteriol. 188:2073-2080. https://doi.org/10.1128/JB.188.6.2073-2080.2006
  38. Mannaa, M., Park, I. and Seo, Y.-S. 2019. Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species. Int. J. Mol. Sci. 20:121. https://doi.org/10.3390/ijms20010121
  39. McCarter, L. L. 2006. Regulation of flagella. Curr. Opin. Microbiol. 9:180-186. https://doi.org/10.1016/j.mib.2006.02.001
  40. Moller, A. K., Leatham, M. P., Conway, T., Nuijten, P. J. M., de Haan, L. A. M., Krogfelt, K. A. and Cohen, P. S. 2003. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. Infect. Immun. 71:2142-2152. https://doi.org/10.1128/IAI.71.4.2142-2152.2003
  41. Nakao, R., Ramstedt, M., Wai, S. N. and Uhlin, B. E. 2012. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS ONE 7:e51241. https://doi.org/10.1371/journal.pone.0051241
  42. Newman, M.-A., Sundelin, T., Nielsen, J. T. and Erbs, G. 2013. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4:139. https://doi.org/10.3389/fpls.2013.00139
  43. Ortega, X., Hunt, T. A., Loutet, S., Vinion-Dubiel, A. D., Datta, A., Choudhury, B., Goldberg, J. B., Carlson, R. and Valvano, M. A. 2005. Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J. Bacteriol. 187: 1324-1333. https://doi.org/10.1128/JB.187.4.1324-1333.2005
  44. Ortega, X., Silipo, A., Saldías, M. S., Bates, C. C., Molinaro, A. and Valvano, M. A. 2009. Biosynthesis and structure of the Burkholderia cenocepacia K56-2 lipopolysaccharide core oligosaccharide. truncation of the core oligosaccharide leads to increased binding and sensitivity to polymyxin B. J. Biol. Chem. 284:21738-21751. https://doi.org/10.1074/jbc.M109.008532
  45. Park, B. S. and Lee, J.-O. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45:e66. https://doi.org/10.1038/emm.2013.97
  46. Ren, G., Wang, Z., Li, Y., Hu, X. and Wang, X. 2016. Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli. J. Bacteriol. 198:1576-1584. https://doi.org/10.1128/JB.00094-16
  47. Rowbury, R. J. 2004 Enterobacterial responses to external protons, including responses that involve early warning against stress and the functioning of extracellular pheromones, alarmones and varisensors. Sci. Prog. 87:193-225. https://doi.org/10.3184/003685004783238508
  48. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 1626 pp.
  49. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. and Puhler, A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69-73. https://doi.org/10.1016/0378-1119(94)90324-7
  50. Schoonejans, E., Expert, D. and Toussaint, A. 1987. Characterization and virulence properties of Erwinia chrysanthemi lipopolysaccharide-defective, phi EC2-resistant mutants. J. Bacteriol. 169:4011-4017. https://doi.org/10.1128/jb.169.9.4011-4017.1987
  51. Simon, R., Priefer, U. and Puhler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Nat. Biotechnol. 1:784-791. https://doi.org/10.1038/nbt1183-784
  52. Sperandeo, P., Martorana, A. M. and Polissi, A. 2017. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1451-1460. https://doi.org/10.1016/j.bbalip.2016.10.006
  53. Vilakazi, C. S., Dubery, I. A. and Piater, L. A. 2017. Identification of lipopolysaccharide-interacting plasma membrane-type proteins in Arabidopsis thaliana. Plant Physiol. Biochem. 111:155-165. https://doi.org/10.1016/j.plaphy.2016.11.025
  54. Vivijs, B., Aertsen, A. and Michiels, C. W. 2016. Identification of genes required for growth of Escherichia coli MG1655 at moderately low pH. Front. Microbiol. 7:1672.
  55. Wang, L., Vinogradov, E. V. and Bogdanove, A. J. 2013. Requirement of the lipopolysaccharide O-chain biosynthesis gene wxocB for type III secretion and virulence of Xanthomonas oryzae pv. Oryzicola. J. Bacteriol. 195:1959-1969. https://doi.org/10.1128/JB.02299-12
  56. Wang, Q. and Harshey, R. M. 2009. Rcs signalling-activated transcription of rcsA induces strong anti-sense transcription of upstream fliPQR flagellar genes from a weak intergenic promoter: regulatory roles for the anti-sense transcript in virulence and motility. Mol. Microbiol. 74:71-84. https://doi.org/10.1111/j.1365-2958.2009.06851.x
  57. Wang, Z., Wang, J., Ren, G., Li, Y. and Wang, X. 2015. Influence of core oligosaccharide of lipopolysaccharide to outer membrane behavior of Escherichia coli. Mar. Drugs 13:3325-3339. https://doi.org/10.3390/md13063325
  58. Westphal, O. 1965. Bacterial lipopolysaccharides extraction with phenol-water and further applications of the procedure. Methods Carbohydr. Chem. 5:83-91.
  59. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P. and Durner, J. 2004. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. U. S. A. 101:15811-15816. https://doi.org/10.1073/pnas.0404536101