References
- Beher, M. G. and Schnaitman, C. A. 1981. Regulation of the OmpA outer membrane protein of Escherichia coli. J. Bacteriol. 147:972-985. https://doi.org/10.1128/JB.147.3.972-985.1981
- Berry, M. C., McGhee, G. C., Zhao, Y. and Sundin, G. W. 2009. Effect of a waaL mutation on lipopolysaccharide composition, oxidative stress survival, and virulence in Erwinia amylovora. FEMS Microbiol. Lett. 291:80-87. https://doi.org/10.1111/j.1574-6968.2008.01438.x
- Castelli, M. E., Fedrigo, G. V., Clementin, A. L., Ielmini, M. V., Feldman, M. F. and Vescovi, E. G. 2008. Enterobacterial common antigen integrity is a checkpoint for flagellar biogenesis in Serratia marcescens. J. Bacteriol. 190:213-220. https://doi.org/10.1128/JB.01348-07
- Chen, R., Barphagha, I. K. and Ham, J. H. 2015. Identification of potential genetic components involved in the deviant quorumsensing signaling pathways of Burkholderia glumae through a functional genomics approach. Front. Cell. Infect. Microbiol. 5:22. https://doi.org/10.3389/fcimb.2015.00022
- Chun, H., Choi, O., Goo, E., Kim, N., Kim, H., Kang, Y., Kim, J., Moon, J. S. and Hwang, I. 2009. The quorum sensingdependent gene katG of Burkholderia glumae is important for protection from visible light. J. Bacteriol. 191:4152-4157. https://doi.org/10.1128/JB.00227-09
- Denny, T. P. 1995. Involvement of bacterial polysaccharides in plant pathogenesis. Annu. Rev. Phytopathol. 33:173-197. https://doi.org/10.1146/annurev.py.33.090195.001133
- Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47:1530-1540. https://doi.org/10.1093/pcp/pcl019
- Dong, H., Tang, X., Zhang, Z. and Dong, C. 2017. Structural insight into lipopolysaccharide transport from the gramnegative bacterial inner membrane to the outer membrane. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1461-1467. https://doi.org/10.1016/j.bbalip.2017.08.003
- Dow, J. M., Osbourn, A. E., Wilson, T. J. G. and Daniels, M. J. 1995. A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Mol. Plant-Microbe Interact. 8:768-777. https://doi.org/10.1094/MPMI-8-0768
- Finnegan, T., Steenkamp, P. A., Piater, L. A. and Dubery, I. A. 2016. The lipopolysaccharide-induced metabolome signature in Arabidopsis thaliana reveals dynamic reprogramming of phytoalexin and phytoanticipin pathways. PLoS ONE 11:e0163572. https://doi.org/10.1371/journal.pone.0163572
- Francez-Charlot, A., Laugel, B., Van Gemert, A., Dubarry, N., Wiorowski, F., Castanie-Cornet, M.-P., Gutierrez, C. and Cam, K. 2003. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol. Microbiol. 49:823-832. https://doi.org/10.1046/j.1365-2958.2003.03601.x
- Gronow, S., Brabetz, W. and Brade, H. 2000. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur. J. Biochem. 267:6602-6611. https://doi.org/10.1046/j.1432-1327.2000.01754.x
- Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12:329-339. https://doi.org/10.1111/j.1364-3703.2010.00676.x
- Hamad, M. A., Di Lorenzo, F., Molinaro, A. and Valvano, M. A. 2012. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia. Mol. Microbiol. 85:962-974. https://doi.org/10.1111/j.1365-2958.2012.08154.x
- He, Y.-W., Wu, J., Cha, J.-S. and Zhang, L.-H. 2010. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol. 10:187. https://doi.org/10.1186/1471-2180-10-187
- Hendrick, C. A. and Sequeira, L. 1984. Lipopolysaccharidedefective mutants of the wilt pathogen Pseudomonas solanacearum. Appl. Environ. Microbiol. 48:94-101. https://doi.org/10.1128/AEM.48.1.94-101.1984
- Holst, O. 2007. The structures of core regions from enterobacterial lipopolysaccharides: an update. FEMS Microbiol. Lett. 271:3-11. https://doi.org/10.1111/j.1574-6968.2007.00708.x
- Huang, Y.- H., Ferrieres, L. and Clarke, D. J. 2006. The role of the Rcs phosphorelay in Enterobacteriaceae. Res. Microbiol. 157:206-212. https://doi.org/10.1016/j.resmic.2005.11.005
- Jang, M. S., Goo, E., An, J. H., Kim, J. and Hwang, I. 2014. Quorum sensing controls flagellar morphogenesis in Burkholderia glumae. PLoS ONE 9:e84831. https://doi.org/10.1371/journal.pone.0084831
- Jeong, Y., Cheong, H., Choi, O., Kim, J. K., Kang, Y., Kim, J., Lee, S., Koh, S., Moon, J. S. and Hwang, I. 2011. An HrpBdependent but type III-independent extracellular aspartic protease is a virulence factor of Ralstonia solanacearum. Mol. Plant Pathol. 12:373-380. https://doi.org/10.1111/j.1364-3703.2010.00679.x
- Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87:890-895. https://doi.org/10.1094/PDIS.2003.87.8.890
- Jung, B., Park, J., Kim, N., Li, T., Kim, S., Bartley, L. E., Kim, J., Kim, I., Kang, Y., Yun, K., Choi, Y., Lee, H.-H., Ji, S., Lee, K. S., Kim, B. Y., Shon, J. C., Kim, W. C., Liu, K.-H., Yoon, D., Kim, S., Seo, Y.-S. and Lee, J. 2018. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9:31. https://doi.org/10.1038/s41467-017-02430-2
- Kalogeraki, V. S. and Winans, S. C. 1997. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69-75. https://doi.org/10.1016/S0378-1119(96)00778-0
- Keen, N. T., Tamaki, S., Kobayashi, D. and Trollinger, D. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191-197. https://doi.org/10.1016/0378-1119(88)90117-5
- Kim, J. K., Jang, H. A., Kim, M. S., Cho, J. H., Lee, J., Di Lorenzo, F., Sturiale, L., Silipo, A., Molinaro, A. and Lee, B. L. 2017. The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris. J. Biol. Chem. 292:19226-19237 https://doi.org/10.1074/jbc.M117.813832
- Kim, J., Kang, Y., Choi, O., Jeong, Y., Jeong, J.-E., Lim, J. Y., Kim, M., Moon, J. S., Suga, H. and Hwang, I. 2007. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol. Microbiol. 64:165-179. https://doi.org/10.1111/j.1365-2958.2007.05646.x
- Kim, J., Kim, J.-G., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T. and Hwang, I. 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54:921-934. https://doi.org/10.1111/j.1365-2958.2004.04338.x
- Kim, J., Mannaa, M., Kim, N., Lee, C., Kim, J., Park, J., Lee, H.-H. and Seo, Y.-S. 2018. The roles of two hfq genes in the virulence and stress resistance of Burkholderia glumae. Plant Pathol. J. 34:412-425. https://doi.org/10.5423/PPJ.OA.06.2018.0097
- King, K. Y., Horenstein, J. A. and Caparon, M. G. 2000. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol. 182:5290-5299. https://doi.org/10.1128/JB.182.19.5290-5299.2000
- Kong, Q., Yang, J., Liu, Q., Alamuri, P., Roland, K. L. and Curtiss, R. 3rd. 2011. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium. Infect. Immun. 79:4227-4239. https://doi.org/10.1128/IAI.05398-11
- Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176. https://doi.org/10.1016/0378-1119(95)00584-1
- Kutschera, A. and Ranf, S. 2018. The multifaceted functions of lipopolysaccharide in plant-bacteria interactions. Biochimie 159:93-98. https://doi.org/10.1016/j.biochi.2018.07.028
- Lee, J., Park, J., Kim, S., Park, I. and Seo, Y.-S. 2016. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 17:65-76. https://doi.org/10.1111/mpp.12262
- Lelis, T., Peng, J., Barphagha, I., Chen, R. and Ham, J. H. 2019. The virulence function and regulation of the metalloprotease gene prtA in the plant-pathogenic bacterium, Burkholderia glumae. Mol. Plant-Microbe Interact. 32:841-852. https://doi.org/10.1094/MPMI-11-18-0312-R
- Levene, H. 1960. Robust tests for equality of variances. In: Contributions to probability and statistics: essays in honor of Harold Hotelling, eds. by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow and H. B. Mann, pp. 278-292. Stanford University Press, Palo Alto, CA, USA.
- Li, J. and Wang, N. 2011. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol. 12:381-396. https://doi.org/10.1111/j.1364-3703.2010.00681.x
- Loutet, S. A., Flannagan, R. S., Kooi, C., Sokol, P. A. and Valvano, M. A. 2006. A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. J. Bacteriol. 188:2073-2080. https://doi.org/10.1128/JB.188.6.2073-2080.2006
- Mannaa, M., Park, I. and Seo, Y.-S. 2019. Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species. Int. J. Mol. Sci. 20:121. https://doi.org/10.3390/ijms20010121
- McCarter, L. L. 2006. Regulation of flagella. Curr. Opin. Microbiol. 9:180-186. https://doi.org/10.1016/j.mib.2006.02.001
- Moller, A. K., Leatham, M. P., Conway, T., Nuijten, P. J. M., de Haan, L. A. M., Krogfelt, K. A. and Cohen, P. S. 2003. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. Infect. Immun. 71:2142-2152. https://doi.org/10.1128/IAI.71.4.2142-2152.2003
- Nakao, R., Ramstedt, M., Wai, S. N. and Uhlin, B. E. 2012. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS ONE 7:e51241. https://doi.org/10.1371/journal.pone.0051241
- Newman, M.-A., Sundelin, T., Nielsen, J. T. and Erbs, G. 2013. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4:139. https://doi.org/10.3389/fpls.2013.00139
- Ortega, X., Hunt, T. A., Loutet, S., Vinion-Dubiel, A. D., Datta, A., Choudhury, B., Goldberg, J. B., Carlson, R. and Valvano, M. A. 2005. Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J. Bacteriol. 187: 1324-1333. https://doi.org/10.1128/JB.187.4.1324-1333.2005
- Ortega, X., Silipo, A., Saldías, M. S., Bates, C. C., Molinaro, A. and Valvano, M. A. 2009. Biosynthesis and structure of the Burkholderia cenocepacia K56-2 lipopolysaccharide core oligosaccharide. truncation of the core oligosaccharide leads to increased binding and sensitivity to polymyxin B. J. Biol. Chem. 284:21738-21751. https://doi.org/10.1074/jbc.M109.008532
- Park, B. S. and Lee, J.-O. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45:e66. https://doi.org/10.1038/emm.2013.97
- Ren, G., Wang, Z., Li, Y., Hu, X. and Wang, X. 2016. Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli. J. Bacteriol. 198:1576-1584. https://doi.org/10.1128/JB.00094-16
- Rowbury, R. J. 2004 Enterobacterial responses to external protons, including responses that involve early warning against stress and the functioning of extracellular pheromones, alarmones and varisensors. Sci. Prog. 87:193-225. https://doi.org/10.3184/003685004783238508
- Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 1626 pp.
- Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. and Puhler, A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69-73. https://doi.org/10.1016/0378-1119(94)90324-7
- Schoonejans, E., Expert, D. and Toussaint, A. 1987. Characterization and virulence properties of Erwinia chrysanthemi lipopolysaccharide-defective, phi EC2-resistant mutants. J. Bacteriol. 169:4011-4017. https://doi.org/10.1128/jb.169.9.4011-4017.1987
- Simon, R., Priefer, U. and Puhler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Nat. Biotechnol. 1:784-791. https://doi.org/10.1038/nbt1183-784
- Sperandeo, P., Martorana, A. M. and Polissi, A. 2017. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1451-1460. https://doi.org/10.1016/j.bbalip.2016.10.006
- Vilakazi, C. S., Dubery, I. A. and Piater, L. A. 2017. Identification of lipopolysaccharide-interacting plasma membrane-type proteins in Arabidopsis thaliana. Plant Physiol. Biochem. 111:155-165. https://doi.org/10.1016/j.plaphy.2016.11.025
- Vivijs, B., Aertsen, A. and Michiels, C. W. 2016. Identification of genes required for growth of Escherichia coli MG1655 at moderately low pH. Front. Microbiol. 7:1672.
- Wang, L., Vinogradov, E. V. and Bogdanove, A. J. 2013. Requirement of the lipopolysaccharide O-chain biosynthesis gene wxocB for type III secretion and virulence of Xanthomonas oryzae pv. Oryzicola. J. Bacteriol. 195:1959-1969. https://doi.org/10.1128/JB.02299-12
- Wang, Q. and Harshey, R. M. 2009. Rcs signalling-activated transcription of rcsA induces strong anti-sense transcription of upstream fliPQR flagellar genes from a weak intergenic promoter: regulatory roles for the anti-sense transcript in virulence and motility. Mol. Microbiol. 74:71-84. https://doi.org/10.1111/j.1365-2958.2009.06851.x
- Wang, Z., Wang, J., Ren, G., Li, Y. and Wang, X. 2015. Influence of core oligosaccharide of lipopolysaccharide to outer membrane behavior of Escherichia coli. Mar. Drugs 13:3325-3339. https://doi.org/10.3390/md13063325
- Westphal, O. 1965. Bacterial lipopolysaccharides extraction with phenol-water and further applications of the procedure. Methods Carbohydr. Chem. 5:83-91.
- Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P. and Durner, J. 2004. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. U. S. A. 101:15811-15816. https://doi.org/10.1073/pnas.0404536101