과제정보
연구 과제 주관 기관 : Pukyong National University
참고문헌
- T. Arbogast and M. Wheeler, A characteristics-mixed finite element method for advection-dominated transport problem, SIAM J. Numer. Anal. 32(2) (1995), 404-424. https://doi.org/10.1137/0732017
- G. I. Barenblatt, I. P. Zheltov and I. N. Kochian, Basic conception in the theory of seepage of homogenous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), 1286-1309. https://doi.org/10.1016/0021-8928(60)90107-6
- K. Boukir, Y. Maday and B. Metivet, A high-order characteristics/finite element method for the incompressible navier-stokes equations, Inter. Jour. Numer. Methods in Fluids. 25 (1997), 1421-1454. https://doi.org/10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A
- Z. Chen, Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Methods. Appl. Mech. Engrg. 191 (2002), 2509-2538. https://doi.org/10.1016/S0045-7825(01)00411-X
- Z. Chen, R. Ewing, Q. Jiang and A. Spagnuolo, Error analysis for characteristics-based methods for degenerate parabolic problems, SIAM J. Numer. Anal. 40(4) (2002), 1491-1515. https://doi.org/10.1137/S003614290037068X
- C. Dawson, T. Russell and M. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal. 26(6) (1989), 1487-1512. https://doi.org/10.1137/0726087
- J. Douglas and T. F. Russell Jr., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristic with finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982), 871-885. https://doi.org/10.1137/0719063
- R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev equations, SIAM J. Numer. Anal. 15 (1978), 1125-1150. https://doi.org/10.1137/0715075
- F. Gao and H. Rui, A split least-squares characteristic mixed finite element method for Sobolev equations with convection term, Math. Comput. Simulation 80 (2009), 341-351. https://doi.org/10.1016/j.matcom.2009.07.003
- H. Gu, Characteristic finite element methods for nonlinear Sobolev equations, Applied Math. Compu. 102 (1999), 51-62. https://doi.org/10.1016/S0096-3003(98)10019-X
-
L. Guo and H. Z. Chen,
$H^1$ -Galerkin mixed finite element method for the Sobolev equation, J. Sys. Sci. 26 (2006), 301-314. - H. Guo and H. X. Rui, Least-squares Galerkin mixed finite element method for the Sobolev equation, Acta Math. Appl. Sinica 29 (2006), 609-618. https://doi.org/10.3321/j.issn:0254-3079.2006.04.004
- X. Long and C. Chen, Implicit-Explicit multistep characteristic finite element methods for nonlinear convection-diffusion equations, Numer. Methods Parial Differential Eq. 23 (2007), 1321-1342. https://doi.org/10.1002/num.20222
-
M. R. Ohm and H. Y. Lee,
$L^2$ -error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations, Bull. Korean. Math. Soc. 48(5) (2011), 897-915. https://doi.org/10.4134/BKMS.2011.48.5.897 -
M. R. Ohm, H. Y. Lee and J. Y. Shin,
$L^2$ -error analysis of discontinuous Galerkin approximations for nonlinear Sobolev equations, J. Japanese Indus. Appl. Math. 30(1) (2013), 91-110. https://doi.org/10.1007/s13160-012-0096-7 - M. R. Ohm and J. Y. Shin, A split least-squares characteristics mixed finite element method for the convection dominated Sobolev equations, J. Appl. Math. Informatics. 34(1) (2016), 19-34. https://doi.org/10.14317/jami.2016.019
- M. R. Ohm and J. Y. Shin, A Crank-Nicolson characteristic finite element method for Sobolev equations, East Asian Math. J. 30(5) (2016), 729-744.
- A. Pehlivanov, G. F. Carey and D. Lazarov, Least-squares mixed finite elements for second-order elliptic problems, SIAM J. Numer. Anal. 31 (1994), 1368-1377. https://doi.org/10.1137/0731071
- P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Proc. Conf. on Mathemaical Aspects of Finite Element Methods, Lecture Notes in Math., Vol. 606, Springer-Verlag, Berlin, 1977, 292-315.
- H. X. Rui, S. Kim and S. D. Kim, A remark on least-squares mixed element methods for reaction-diffusion problems, J. Comput. Appl. Math. 202 (2007), 203-236. https://doi.org/10.1016/j.cam.2006.02.025
- D. M. Shi, On the initial boundary value problem of the nonlinear equation of the migration of the moisture in soil, Acta math. Appl. Sinica 13 (1990), 31-38.
- T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 23-31. https://doi.org/10.1016/0022-247X(74)90116-4
- D. P. Yang, Some least-squares Galerkin procedures for first-order time-dependent convection-diffusion system, Comput. Methods Appl. Mech. Eng. 108 (1999), 81-95. https://doi.org/10.1016/S0045-7825(99)00050-X
- D. P. Yang, Analysis of least-squares mixed finite element methods for nonlinear non-stationary convection-diffusion problems, Math. Comput. 69 (2000), 929-963. https://doi.org/10.1090/S0025-5718-99-01172-2
- J. Zhang amd H. Guo, A split least-squares characteristic mixed element method for nonlinear nonstationary convection-diffusion problem, Int. J. Comput. Math. 89 (2012), 932-943. https://doi.org/10.1080/00207160.2012.667086