DOI QR코드

DOI QR Code

정상 성인에서 음성 및 말소리 범위 프로파일을 이용한 발화 기본주파수 예측

Prediction of speaking fundamental frequency using the voice and speech range profiles in normal adults

  • 이승진 (연세대학교 의과대학 이비인후과학교실 및 강남세브란스병원 이비인후과 후두음성언어의학연구소) ;
  • 김재옥 (강남대학교 교육대학원 언어치료교육전공)
  • Lee, Seung Jin (Department of Otorhinolaryngology, Yonsei University College of Medicine, The Institute of Logopedics & Phoniatrics, Department of Otorhinolaryngology, Gangnam Severance Hospital) ;
  • Kim, Jaeock (Major in Speech Pathology Education, Graduate School of Education, Kangnam University)
  • 투고 : 2019.07.31
  • 심사 : 2019.08.23
  • 발행 : 2019.09.30

초록

본 연구에서는 한국인 정상 성인에서 음성(VRP) 및 말소리 범위 프로파일(SRP)을 이용하여 문단 읽기 시 전기성문파형검사(EGG)를 이용하여 측정한 평균 발화 기본주파수(SFF)를 예측할 수 있는지 알아보고자 하였다. 또한 추정된 기본주파수(ESFF)와 실제 SFF 간 차이(DSFF)에 있어 성별 차이가 있는지 알아보고자 하였다. 연구대상은 정상 음성을 가진 한국어 모국어 화자 85명이었다. 각 대상자는 /a/ 발성으로 전체 음역대를 측정하는 VRP 과제, '가을' 문단의 첫 번째 문장을 읽어 말소리 산출 시 음역대를 측정하는 SRP 과제, 전체 문단을 읽어 SFF를 측정하는 문단 읽기 과제를 수행하였다. VRP와 SRP를 통해 측정된 음역대 관련 변수들와 연령, 성별이 EGG를 통해 측정된 SFF를 예측할 수 있는지 알아보기 위해 단계적 다중회귀분석을 시행하였고, 예측된 ESFF와 SFF 간 차이의 절대값(DSFF)과 그 합계를 구하였다. 연구 결과, SFF의 예측변인은 VRP에서는 최저음도, 음도범위, 성별, 연령(adjusted $R^2=.931$)이었으며, SRP에서는 반음 단위 음역대와 최고음도(adjusted $R^2=.963$)였다. VRP와 SRP를 통해 예측된 두 가지 ESFF와 실제 SFF 사이에는 강한 양의 상관관계가 있었다. VRP와 SRP를 이용한 DSFF와 그 합계에 있어 성별 차이는 없었다. 결론적으로 VRP와 SRP를 통해 문단 읽기 시 SFF를 예측할 수 있었으며, SFF의 이상을 보일 수 있는 음성장애 환자에서 후속 연구를 통하여 임상적 시사점을 탐색할 필요가 있을 것으로 여겨진다.

This study sought to investigate whether mean speaking fundamental frequency (SFF) can be predicted by parameters of voice and speech range profile (VRP and SRP) in Korean normal adults. Moreover, it explored whether gender differences exist in the absolute differences between the SFF and estimated SFF (ESFF) predicted by the VRP and SRP. A total of 85 native Korean speakers with normal voice participated in the study. Each participant was asked to perform the VRP task using the vowel /a/ and the SRP task using the first sentence of a Korean standard passage "Ga-eul". In addition, the SFF was measured with electroglottography during a passage reading task. Predictive factors of the SFF were explored and the absolute difference between the SFF and the ESFF (DSFF) was compared between gender groups. Results indicated that predictive factors were age, gender, minimum pitch and pitch range for the VRP (adjusted $R^2=.931$), and pitch range (in semi-tones) and maximum pitch for the SRP (adjusted $R^2=.963$), respectively. The SFF and ESFF predicted by the VRP and SRP showed a strong positive correlation. The DSFF of the VRP and SRP, as well as their sum did not differ by gender. In conclusion, the SFF during a passage reading task could be successfully predicted by the parameters of the VRP and SRP tasks. In further studies, clinical implications need to be explored in patients who may exhibit deviations in SFF.

키워드

참고문헌

  1. Berg, M., Fuchs, M., Wirkner, K., Loeffler, M., Engel, C., & Berger T. (2017). The speaking voice in the general population: Normative data and associations to sociodemographic and lifestyle factors. Journal of Voice, 31(2), 257.e13-257.e24. https://doi.org/10.1016/j.jvoice.2016.06.001
  2. D'Alatri, L., & Marchese M. R. (2014). The speech range profile (SRP): An easy and useful tool to assess vocal limits. Acta Otorhinolaryngologica Italica, 34(4), 253-258.
  3. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149
  4. Herbst, C. T., & Dunn, J. C. (2019). Fundamental frequency estimation of low-quality electroglottographic signals. Journal of Voice, 33(4), 401-411. https://doi.org/10.1016/j.jvoice.2018.01.003
  5. Hirano, M. (1981). Clinical examination of voice. New York, NY: Springer.
  6. Jung, W. J. (2018). Development and validation of a simplified voice range profile (VRP) measurement for patients with voice disorder (Master's thesis). Daegu Catholic University, Korea.
  7. KayPENTAX (2009). Voice Range Profile (VRP) Model 4326, Software Instruction Manual. Montvale, NJ: KayPENTAX .
  8. Kim, H. (2012). Neulologic speech-language disorders. Seoul: Sigma Press.
  9. Kim, J. O. (2010). The analysis of eletroglottographic measures of vowel and sentence in Korean healthy adults. Phonetics and Speech Sciences, 2(4), 223-228.
  10. Lee, S. J., Choi, H. S., Kim, H. H., Byeon, H. K., Lim, S. E., & Yang, M. K. (2016). Korean version of the voice activity and participation profile (K-VAPP): A validation study. Communication Sciences & Disorders, 21(4), 695-708. https://doi.org/10.12963/csd.16348
  11. Lee, S. J., Choi, H. S., Lim, J. Y., & Lee, K. Y. (2018). The effect of the Modified Voiced Lip Trill (MVoLT) training on vocal changes of musical theater students. Phonetics and Speech Sciences, 10(4), 135-146. https://doi.org/10.13064/KSSS.2018.10.4.135
  12. Lee, S. J., Lim, S. E., & Choi, H. S. (2017). Responsiveness of the Korean version of the voice activity and participation profile (K-VAPP) after surgical intervention. Communication Sciences & Disorders, 22(2), 379-390. https://doi.org/10.12963/csd.17407
  13. Ma, E. P. M., & Lam, N. L. N. (2015). Speech task effects on acoustic measure of fundamental frequency in Cantonese-speaking children. International Journal of Pediatric Otorhinolaryngology, 79(12), 2260-2264. https://doi.org/10.1016/j.ijporl.2015.10.018
  14. Ma, E. P., & Yiu, E. M. (2011). Handbook of voice assessments. San Diego, CA: Plural Pub.
  15. Ma, E., Robertson, J., Radford, C., Vagne, S., El-Halabi, R., & Yiu, E. (2007). Reliability of speaking and maximum voice range measures in screening for dysphonia. Journal of Voice, 21(4), 397-406. https://doi.org/10.1016/j.jvoice.2006.03.004
  16. Sataloff, R. T. (2005). Clinical assessment of voice. San Diego, CA: Plural Pub.