DOI QR코드

DOI QR Code

Antimelanogenic Effect of Isomaltol Glycoside from Red Ginseng Extract

홍삼추출물에 함유된 이소말톨 글리토시드의 멜라닌 생성저해 효과

  • Lee, Sang Myung (Department of Chemistry and Cosmetics, College of Sciences & Technology, Mokwon University)
  • 이상명 (목원대학교 화학화장품학부)
  • Received : 2019.07.08
  • Accepted : 2019.09.16
  • Published : 2019.09.30

Abstract

Isomaltol glycoside is a hydrophilic furanic glycoside in which the amino acids and sugars of ginseng are thermally denatured during red ginseng production. Various skin whitening tests were conducted on isomaltol glycoside containing a lot of red ginseng extract in order to investigate the skin whitening effect as a cosmetic raw material. We have tested melanin content assay in B16-F10 cells, zebrafish embryo pigmentation assay, mushroom tyrosinase inhibitory activity, western blot analysis to determine skin whitening activity of isomaltol glycosides. In the zebrafish melanin content assay, isomaltol glycoside decreased total melanin content by about 20% and zebrafish tyrosinase activity by about 10% after treatment with 50 and $100{\mu}g/mL$ compared to the untreated control group. Isomaltol glycoside also showed a concentration-dependent decrease in melanin content in B16-F10 melanoma. Furthermore, it increased the expression of MITF phosphorylation factors p-AKT and p-ERK in B16-F10 melanoma and decreased the concentration of MITF. It also inhibited tyrosinase, TRP-1 and TRP-2 expression. The content of isomaltol glycoside was about 3% in the ginseng extract and about 1% in the ginseng root. Thus, isomaltol glycoside is considered as one of the main components that exhibit the whitening activity of ginseng when considered quantitatively as whitening activity.

이소말톨 글리코시드는 홍삼제조과정에서 인삼이 함유하고 있는 아미노산과 당의 열전환물질로서 홍삼 추출물에 다량 함유된 친수성 퓨란배당체이다. 현재 화장품원료로 자주 사용되고 있는 홍삼추출물의 화장품원료로서의 가치를 재고하기 위하여 홍삼추출물의 주성분인 이소말톨 글리코시드에 대하여 다양한 피부미백활성 실험을 실시 하였다. 우리는 이소말톨 글리코시드에 대한 B16-F10 세포에서의 멜라닌함량 변화, 제브라피쉬배아착색 분석, 버섯티로시나제 저해활성, 피부미백활성 기전결정을 위한 단백질 분석을 실시하였다. 제브라피쉬 멜라닌 함량 분석에서 이소말톨 글리코시드는 처리하지 않은 대조군과 비교하여 50 및 $100{\mu}g/mL$ 처리 후 총 멜라닌 함량을 약 20% 감소 시켰으며 제브라피쉬 속의 타이로시나제 활성을 약 10% 감소시켰다. 이소말톨 글리코시드는 또한 B16-F10 흑색 종에서 멜라닌 함량의 농도의존적인 감소를 보였으며 MITF 인산화 인자인 p-AKT 및 p-ERK의 발현을 증가시키고 MITF의 농도를 감소시켰다. 또한 이소말톨 글리코시드는 세포내 타이로시나제, TRP-1 및 TRP-2 발현을 억제 하였다. 이소말톨 글리코시드의 함량은 인삼 추출물에서 약 3%, 인삼 뿌리에서 약 1%였다. 따라서, 정량적으로 고려할 때 홍삼추출물에 다량 함유되어있는 이소말톨 글리코시드는 홍삼의 미백활성을 나타내는 주요성분 중 하나로 판단된다.

Keywords

References

  1. S. M. Lee, B. S. Bae, H. W. Park, N. G. Ahn, B. G. Cho, Y. L. Cho, and Y. S. Kwak, Characterization of Korean red ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition, J Ginseng Res, 39(4), 384 (2015). https://doi.org/10.1016/j.jgr.2015.04.009
  2. S. M. Lee, Y. H. Im, S. C. Kim, J. H. Choi, and J. H. Kim, Anti-wrinkle effects of converted protopanaxatriol prepared from Korean red ginseng, Kor. J. Aesthet. Cosmetol., 11(5), 877 (2013).
  3. K. M. Kim, Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action, J Ginseng Res, 39(1), 1 (2015). https://doi.org/10.1016/j.jgr.2014.10.006
  4. D. Y. Lee, Y. T. Jeong, S. C. Jeong, M. K. Lee, J. W. Min, J. W. Lee, and J. H. Kim, Melanin biosynthesis inhibition effects of ginsenoside Rb2 isolated from Panax ginseng Berry, J. Microbiol. Biotechnol., 25(12), 2011 (2015). https://doi.org/10.4014/jmb.1505.05069
  5. S. Sasidharan, Y. Chen, D. Saravanan, K. M. Sundram, and L. L. Yoga, Extraction, Isolation and characterization of bioactive compounds from plants' extracts, Afr J Tradit Complement Altern Med, 8(1), 1 (2011).
  6. C. I. Rodriguez and V. Setaluri, Cyclic AMP (cAMP) signaling in melanocytes and melanoma, Arch. Biochem. Biophys., 563, 22 (2014). https://doi.org/10.1016/j.abb.2014.07.003
  7. W. Claudia and M. Richard, Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation, J. Cell. Biol., 170(5), 703 (2005). https://doi.org/10.1083/jcb.200505059
  8. C. Wang, L. Zhao, Q. Su, X. Fan, Y. Wang, S. Gao, and Z. Liu, Phosphorylation of MITF by AKT affects its downstream targets and causes TP53-dependent cell senescence, Int. J. Biochem. Cell Biol., 80, 132 (2016). https://doi.org/10.1016/j.biocel.2016.09.029
  9. X. Chen, T. Gu, J. H. Wang, H. Xiong, Y. Q. Wang, G. L. Liu, Y. Qu, and N. Zhang, Effects of wogonin on the mechanism of melanin synthesis in A375 cells, Exp Ther Med, 14(5), 4547 (2017).
  10. E. V. Curto, C. Kwong, H. Hermersdorfer, H. Glatt, C. Santis, V. Virador, andT. P. Dooley, Inhibitors of mammalian melanocyte tyrosinase: In vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors, Biochem. Pharmacol., 57(6), 663 (1999). https://doi.org/10.1016/S0006-2952(98)00340-2
  11. K. B. Penney, C. J. Smith, and J. C. Allen, Depigmenting action of hydroquinone depends on disruption of fundamental cell processes, J. Invest. Dermatol., 82(4), 308 (1984). https://doi.org/10.1111/1523-1747.ep12260588
  12. T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors, J Enzyme Inhib Med Chem, 32(1), 403 (2017). https://doi.org/10.1080/14756366.2016.1256882
  13. B. H. Han, M. H. Park, and Y. H. Han, Isolation of isomaltol-${\alpha}$-D-glucopyranoside1 and ketopropyl-${\alpha}$-D-glucopyranoside from Korean red ginseng, Arch. Pharm. Res., 8(4), 257 (1985). https://doi.org/10.1007/BF02856500
  14. W. J. Yoon, M. J. Kim, H. B. Koh, W. J. Lee, N. H. Lee, and C. G. Hyun, Effect of Korean red sea cucumber (Stichopus japonicus) on melanogenic protein expression in murine B16 melanoma, Int. J. Pharmacol., 6(1), 37 (2010). https://doi.org/10.3923/ijp.2010.37.42
  15. J. Karlsson, J. Hofsten, and P. E. Olsson, Generating transparent zebrafish: A efined mMethod to improve detection of gene expression during embryonic development, Mar. Biotechnol., 3(6), 522 (2001). https://doi.org/10.1007/s1012601-0053-4
  16. T. Y. Choi, J. H. Kim, D. H. Ko, C. H. Kim, J. S. Hwang, S. Ahn, S. Y. Kim, C. D. Kim, J. H. Lee and T. J. Yoon, Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds, Pigment Cell Res., 20(2), 120 (2007). https://doi.org/10.1111/j.1600-0749.2007.00365.x
  17. A. Ishihara, Y. Ide, T. Bito, N. Ube, N. Endo, K. Sotome, N. Maekawa, K. Ueno, and A. Nakagiri, Novel tyrosinase inhibitors from liquid culture of Neolentinus lepideus, Biosci. Biotechnol. Biochem., 82(1), 22 (2018). https://doi.org/10.1080/09168451.2017.1415125
  18. H. E. Nursten, The Maillard Reaction: Chemistry, biochemistry and implications, ed. The Royal Society of Chemistry, 62, Atheneum Press Ltd, Gateshead Tyne and Wear, UK (2005).
  19. L. Chen and P. Y. Qian, Review on molecular mechanisms of antifouling compounds, Mar Drugs, 15(9), 264 (2017). https://doi.org/10.3390/md15090264
  20. T. S. Chang, Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity, Materials (Basel), 5(9), 1661 (2012). https://doi.org/10.3390/ma5091661
  21. S. A. D'Mello, G. J. Finlay, B. C. Baguley, and M. E. Askarian-Amiri, Signaling pathways in melanogenesis, Int J Mol Sci, 17(7), 1144 (2016). https://doi.org/10.3390/ijms17071144
  22. C. Levy, M. Khaled, and D. E. Fisher, MITF: master regulator of melanocyte development and melanoma oncogene, Trends Mol Med, 12(9), 406 (2006). https://doi.org/10.1016/j.molmed.2006.07.008
  23. C. Olivares and F. Solano, New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins, Pigment Cell Melanoma Res, 22(6), 750 (2009). https://doi.org/10.1111/j.1755-148X.2009.00636.x
  24. S. Briganti, E. Camera, and M. Picardo, Chemical and instrumental approaches to treat hyperpigmentation, Pigment Cell Res., 16(2), 101 (2003). https://doi.org/10.1034/j.1600-0749.2003.00029.x
  25. S. J. Lee, W. J. Lee, S. E. Chang, and G. Y. Lee, Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor, J Ginseng Res, 39(3), 238 (2015). https://doi.org/10.1016/j.jgr.2015.01.001