DOI QR코드

DOI QR Code

A Study on the Design Methodology of CNTFET-based Digital Circuit

CNTFET 기반 디지털 회로 디자인 방법에 관한 연구

  • Cho, Geunho (Dept. of Electronics Engineering, Seokyeong University)
  • Received : 2019.09.05
  • Accepted : 2019.09.26
  • Published : 2019.09.30

Abstract

Over the past decades, the semiconductor industry has continuously scaled down the size of semiconductor devices to increase those performance and to integrate them at higher density on the chip. However, facing the reduction of gate control, higher leakage current, and short channel effect, there is a growing interest in next-generation semiconductors which can overcome these problems. In this paper, we discuss digital circuit design techniques using CNTFET(Carbon NanuTube Field Effect Transistor), which are attracting attention as candidates for the next generation of semiconductors. Since the structure of CNTFETs are clearly different from the structure of the structure of conventional MOSFETs, we will discuss how to utilize existing digital circuit methodology when designing digital circuits using the CNTFETs, and then simulate the performance differences between the two devices.

지난 수십 년간 반도체 업계에서는 반도체 소자의 성능을 높이고 높은 밀도로 반도체 소자를 칩 위에 집적하기 위해 끊임없이 그 크기를 축소해 왔다. 하지만, 게이트 제어의 감소, 높아진 누설 전류, 그리고 단 채널 효과와 같은 다양한 문제점에 직면하면서 이를 극복할 수 있는 차세대 반도체에 점점 더 많은 관심을 보이고 있다. 본 논문에서는 다음 반도체 세대를 이끌 후보로 관심을 받고 있는 CNTFET(Carbon NanuTube Field Effect Transistor)을 활용하여 디지털 회로를 디자인하는 방법에 대해 논하고자 한다. CNTFET이 분명 구조적으로 기존 MOSFET과 다른 구조를 가진 만큼, CNTFET을 활용하여 디지털 회로를 디자인할 때, 기존 디지털 회로 기법을 어떻게 활용할 수 있는지 자세히 알아보고 시뮬레이션을 통해 두 소자의 성능 차이를 확인해 보고자 한다.

Keywords

References

  1. J. Deng, et al., "A Compact SPICE Model for Carbon-Nan, otube Field-Effect Transis-tors Including Nonidealities and Its Appli-cation-Part I: Model of the Intrinsic Chan-nel Region," IEEE Transactions on Elec-tron Devices, vol.54, pp.3186-3194, 2007. DOI: 10.1109/TED.2007.909030
  2. J. Deng, et al., "A compact SPICE model for carbon nanotube field effect transistors including non-idealities and its application-Part II: Full device model and circuit performance benchmarking," IEEE Transac-tions on Electron Devices, vol.54, pp.3195-3205, 2007. DOI: 10.1109/ted.2007.909 043
  3. J. Deng and H. S. P. Wong, "Modeling and Analysis of Planar-Gate Electrostatic Capacitance of 1-D FET With Multiple Cylin-drical Conducting Channels," IEEE Trans. Electron Devices, vol.54, no.9, pp.2377-2385, 2007. DOI: 10.1109/TED.2007.902047
  4. Sujay B. Desai, et al, "MoS2 transistors with 1-nanometer gate lengths," Science, vol.354, pp. 99-102, 2016. DOI: 10.1126/science.aah4698
  5. Gage Hills, et al., "Modern microprocessor built from complementary carbon nanotube transistors," Nature, vol.572, pp.595-615, 2019. DOI: 10.1038/s41586-019-1493-8
  6. S. H. CHO, "New material 'carbon nanotube' to advance the dream of ultra-fast semiconductors," http://www.donga.com/news/article/all/20190830/97186868/1
  7. CNFET Models. http://nano.stanford.edu/models.php
  8. PTM Models, http://ptm.asu.edu/
  9. J. Si et al., "Scalable Preparation of High Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors," ACS Nano, vol.12, no.1, pp.627-634, 2018. DOI: 10.1021/acsnano.7b07665
  10. S. Waykol, et al., "Performance Analysis of Classical Two Stage Opamp Using CMOS and CNFET at 32nm Technology," 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), 2018.
  11. G. Cho, et al., "Assessment of CNTFET based circuit performance and robust-ness to PVT variations," in Proc. of 52nd IEEE International Midwest Sympo-sium on Circuits and Systems (MWS-CAS 2009), pp.1106-1109, 2009. DOI: 10.1109/MWSCAS.2009.5235961
  12. Nishant Patil, et al., "Design Methods for Misaligned and Mispositioned Carbon-Nano-tube Immune Circuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.27, pp.1725-1736, 2008. DOI: 10.1109/TCAD. 2008.2003278
  13. Jan M, et al., "Digital Integrated Circuits-A Design Perspective," Prentice Hall, 2003