DOI QR코드

DOI QR Code

Ralstonia pickettii Enhance the DDT Biodegradation by Pleurotus eryngii

  • Purnomo, Adi Setyo (Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo) ;
  • Maulianawati, Diana (Department of Aquaculture, Faculty of Fisheries and Marine Science, Borneo Tarakan University) ;
  • Kamei, Ichiro (Department of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki)
  • Received : 2019.06.14
  • Accepted : 2019.08.28
  • Published : 2019.09.28

Abstract

DDT is a hydrophobic organic pollutant, which can be bio-accumulated in nature and have adverse consequences on the physical condition of humans and animals. This study investigated the relationship between the white-rot fungus Pleurotus eryngii and biosurfactant-producing bacterium Ralstonia pickettii associated with the degradation of DDT. The effects of R. pickettii on fungal development were examined using in vitro confrontation assay on a potato dextrose agar (PDA) medium. R. pickettii culture was added to the P. eryngii culture at 1, 3, 5, 7, and 10 ml ($1ml{\approx}1.44{\times}10^{13}CFU$). After 7 d incubation, about 43% of the initial DDT ($12.5{\mu}M$) was degraded by the P. eryngii culture only. The augmentation of 7 ml of R. pickettii culture revealed a more highly optimized synergism with DDT degradation being approximately 78% and the ratio of optimization 1.06. According to the confrontational assay, R. pickettii promoted the growth of P. eryngii towards the bacterial colony, with no direct contact between the bacterial cells and mycelium (0.71 cm/day). DDD (1,1-dichloro-2,2-bis(4-chlorophenyl) ethane), DDE (1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene), and DDMU (1-chloro-2,2-bis(4-chlorophenyl) ethylene) were identified as metabolic products, indicating that the R. pickettii could enhance the DDT biodegradation by P. eryngii.

Keywords

References

  1. Sudaryanto A, Takahashi S, Tanabe S. 2007. Persistent toxic substances in the environment of Indonesia. Dev. Environ. Sci. 7: 587-627.
  2. Kinuthia M, Hamadi IB, Anne WM, Ciira K, Muniru KT. 2010. Degradation of dichlorodiphenyltrichloroethane (DDT) by bacterial isolates from cultivated and uncultivated soil. Afr. J. Microbiol. Res. 4: 185-196.
  3. Tsakiris IN, Goumenou G, Tzatzarakis MN, Alegakis AK, Tsitsimpikou C, Ozcagli E, et al. 2015. Risk assessment for children exposed to DDT residues in various milk types from the Greek market. Food Chem. Toxicol. 75: 156-165. https://doi.org/10.1016/j.fct.2014.11.012
  4. Chu W. 1999. Photodechlorination mechanism of DDT in a UV/Surfactant system. Environ. Sci. Technol. 33: 421-425. https://doi.org/10.1021/es980293k
  5. Matsunaga A, Yasuhara A. 2005. Dechlorination of polychlorinated organic compounds by electrochemical reduction with naphthalene radical anion as mediator. Chemosphere 59: 1487-1496. https://doi.org/10.1016/j.chemosphere.2004.12.045
  6. Sayles GD, You GR, Wang MX, Kuperferle MJ. 1997. DDT, DDD and DDE Dechlorination by zero-valent iron. Environ. Sci. Technol. 31: 3448-3454. https://doi.org/10.1021/es9701669
  7. Kamei I, Suhara H, Kondo R. 2005. Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl. Microbiol. Biotechnol. 69: 358-366. https://doi.org/10.1007/s00253-005-0052-4
  8. Kamei I, Sonoki S, Haraguchi K, Kondo R. 2006. Fungal bioconversion of toxic polychlorinated biphenyls by whiterot fungus, Phlebia brevispora. Appl. Microbiol. Biotechnol. 73: 932-940. https://doi.org/10.1007/s00253-006-0529-9
  9. Kamei I, Takagi K, Kondo R. 2011. Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute. J. Wood Sci. 57: 317-322. https://doi.org/10.1007/s10086-011-1176-z
  10. Aust SD. 1990. Degradation of Environmental pollutants by Phanerochaete chrysosporium. Microbiol. Ecol. 20: 197-209. https://doi.org/10.1007/BF02543877
  11. Pointing SB. 2001. Feasibility of bioremediation by white rot fungi. Appl. Microbiol. Biotechnol. 57: 20-33. https://doi.org/10.1007/s002530100745
  12. Reddy CA. 1995. The potential for white rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6: 320-328. https://doi.org/10.1016/0958-1669(95)80054-9
  13. Reddy CA, Mathew Z. 2001. Bioremediation potential of white rot fungi. pp. 52-78. In G add GM (ed.), Fungi in bioremediation. Cambridge University Press, London.
  14. Bumpus JA, Aust SD. 1987. Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 53: 2011-2008. https://doi.org/10.1128/AEM.53.9.2001-2008.1987
  15. Purnomo AS, Mori T, KameiI, Nishii T, Kondo R. 2010. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT contaminated soil. Int. Biodet. Biodeg. 64: 397-402. https://doi.org/10.1016/j.ibiod.2010.04.007
  16. Purnomo AS, Mori T, Kamei I, Kondo R. 2011. Basic studies and applications on bioremediation of DDT: A review. Int. Biodet. Biodeg. 65: 921-930. https://doi.org/10.1016/j.ibiod.2011.07.011
  17. Purnomo AS, Ashari K, Hermansyah F. 2017. Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. J. Microbiol. Biotechnol. 27: 1306-1315. https://doi.org/10.4014/jmb.1701.01073
  18. Arisoy M. 1998. Biodegradation of chlorinated organic compounds by white-rot fungi. Bull. Environ. Contam. Toxicol. 60: 872-876. https://doi.org/10.1007/s001289900708
  19. Purnomo AS, Fajriah 2017. Pengaruh penambahan Bacillus subtilis pada biodegradasi DDT Oleh Phlebia brevispora. Akta Kim. Indones. 2: 58-65. https://doi.org/10.12962/j25493736.v2i1.2158
  20. Xiao P, Mori T, Kamei I, Kondo R. 2011. A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation 22: 859-867. https://doi.org/10.1007/s10532-010-9443-z
  21. Grizca BE, Setyo PA. 2018. Abilities of co-cultures of whiterot fungus Ganoderma lingzhi and bacteria Bacillus subtilis on Biodegradation DDT. J. Physics Conf. Series 1095: 102015.
  22. Purnomo AS, Kamei I, Kondo R. 2008. Degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) (DDT) by brownrot fungi. J. Biosci. Bioeng. 105: 614-621. https://doi.org/10.1263/jbb.105.614
  23. Purnomo AS, Mori T, Kondo R. 2010. Involvement of fenton reaction in DDT degradation by brown rot fungi. Int. Biodeterior. Biodegradation 64: 560-565. https://doi.org/10.1016/j.ibiod.2010.06.008
  24. Purnomo AS, Mori T, Takagi K, Kondo R. 2011. Bioremediation of DDT contaminated soil using brown-rot fungi. Int. Biodeterior. Biodegradation 65: 691-695. https://doi.org/10.1016/j.ibiod.2011.04.004
  25. Kamei I, Yoshida T, Enami D, Meguro S. 2012. Coexisting Curtobacterium bacterium promotes growth of white-rot fungus Stereum sp. Curr. Microbiol. 64: 173-178. https://doi.org/10.1007/s00284-011-0050-y
  26. Clausen CA. 1996. Bacterial association with decaying wood: A review. Int. Biodeterior. Biodegradation. 37: 101-107. https://doi.org/10.1016/0964-8305(95)00109-3
  27. Kukor JJ, Olsen RH. 1992. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PK01. J. Bacteriol. 174: 6518-6526. https://doi.org/10.1128/jb.174.20.6518-6526.1992
  28. Massol-Deya A, Weller R, Rios-Hernandez L, Zhou JZ, Hickey RF, Tiedje JM. 1997. Succession and convergence of biofilm communities in fixed-film reactors aromatic hydrocarbons in groundwater. Appl. Environ. Microbiol. 63: 270-27. https://doi.org/10.1128/AEM.63.1.270-276.1997
  29. Ryan MP, Pembroke JT, Adles C. 2007. Ralstonia pickettii in environmental biotechnology: potential and applications. J. Appl. Microbiol. 103: 754-64. https://doi.org/10.1111/j.1365-2672.2007.03361.x
  30. McClay K, Fox BG, Steffan RJ. 1996. Chloroform mineralization by toluene oxidizing bacteria. Appl. Environ. Microbiol. 62: 2716-2722. https://doi.org/10.1128/AEM.62.8.2716-2722.1996
  31. Kiyohara H, Hatta T, Ogawa Y, Kakuda T, Yokoyama H, Takizawa N. 1992. Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Appl. Environ. Microbiol. 58: 1276-1283. https://doi.org/10.1128/AEM.58.4.1276-1283.1992
  32. Yabannavar AV, Zylstra GJ. 1995. Cloning and characterization of the fenes for p-nitrobenzoate degradation from Pseudomonas pickettii YH105. Appl. Environ. Microbiol. 61: 4284-4290. https://doi.org/10.1128/AEM.61.12.4284-4290.1995
  33. Sharma OP, Dawra RK, Datta AK, Kanwar SS. 1997. Biodegradation of Lantadene A, The Pentacyclic Triterpenoid Hepatotoxin by Pseudomonas pickettii. Lett. Appl. Microbiol. 24: 229-232. https://doi.org/10.1046/j.1472-765X.1997.00384.x
  34. Kahng HY, Byrne AM, Olsen RH, Kukor JJ. 2000. Characterization and Role of tbuX in Utilization of Toluene by Ralstonia pickettii PKO1. J. Bacteriol. 182: 1232-1242. https://doi.org/10.1128/JB.182.5.1232-1242.2000
  35. Setyo PA, Dwi RH, Sri F, Sulistyo PH, Ichiro K. 2018. Effects of bacterium Ralstonia pickettii addition on DDT biodegradation by Daedalea dickinsii. Res. J. Chem. Environ. 22(Special issue II): 151-156.
  36. Purnomo AS. 2017. Microbe-assisted degradation of aldrin and dieldrin. In Singh SN (ed.), Microbe-Induced Degradation of Pesticides, pp. 1-22. 1st edn. Springer Nature, Switzerland.
  37. Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I. 2017. Biodegradation of aldrin and dieldrin by the white-rot fungus Pleurotus ostreatus. Curr. Microbiol. 74: 320-324. https://doi.org/10.1007/s00284-016-1184-8
  38. Rizqi HD, Purnomo AS. 2017. The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye. World J. Microbiol. Biotechnol. 33: 92. https://doi.org/10.1007/s11274-017-2256-z
  39. Purnomo AS, Koyama F, Mori T, Kondo R. 2010. DDT degradation potential of cattle manure compost. Chemosphere 80: 619-624. https://doi.org/10.1016/j.chemosphere.2010.04.059
  40. Purnomo AS, Mori T, Putra SR, Kondo R. 2013. Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int. Biodeterior. Biodegradation 82: 40-44. https://doi.org/10.1016/j.ibiod.2013.02.013
  41. Wahyuni S, Suhartono MT, Khaeruni A, Purnomo AS, Asranudin, Holilah, et al. 2016. Purification and characterization of thermostable chitinase from Bacillus SW41 for chitin oligomer production. Asian J. Chem. 28: 2731-2736. https://doi.org/10.14233/ajchem.2016.20099
  42. Wahyuni S, Khaeruni A, Purnomo AS, Asranudin, Holilah, Fatahu 2017. Characterization of mannanase isolated from corncob waste bacteria. Asian J. Chem. 29: 1119-1120. https://doi.org/10.14233/ajchem.2017.20437
  43. Sariwati A, Purnomo, AS, Kamei I. 2017. Abilities of cocultures of brown-rot fungus Fomitopsis pinicola and Bacillus subtilis on biodegradation DDT. Curr. Microbiol. 74: 1068-1069. https://doi.org/10.1007/s00284-017-1286-y
  44. Sariwati A, and Purnomo, AS. 2018. The effect of Pseudomonas aeruginosa addition on 1,1,1 Trichloro 2,2 bis (4 chlorophenyl) ethane DDT biodegradation by brown-rot fungus Fomitopsis pinicola. Indon. J. Chem. 18: 75-81. https://doi.org/10.22146/ijc.25158
  45. Purnomo AS, Putra SR, Shimizu K, Kondo R. 2014. Biodegradation of heptachlor and heptachlor epoxidecontaminated soils by white-rot fungal inocula. Environ. Sci. Pollut. Res. 21: 11305-11312. https://doi.org/10.1007/s11356-014-3026-1
  46. Kamei I. 2017. Co-culturing effects by coexisting bacteria on wood degradation by Trametes versicolor. Curr. Microbiol. 74: 125-131. https://doi.org/10.1007/s00284-016-1162-1
  47. Mille-Lindblom C, Tranvik L. 2003. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microbiol. Ecol. 45: 73-182.
  48. Hadibarata T, Kristanti RA. 2014. Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorine. Fungal Biol. 118: 222-227. https://doi.org/10.1016/j.funbio.2013.11.013
  49. Bonfante P, Anca IA. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63: 363-383. https://doi.org/10.1146/annurev.micro.091208.073504
  50. Frey-Klett P, Garbaye J, Tarkka M. 2007. The mycorrhiza helper bacteria revisited. New Phytol. 176: 22-36. https://doi.org/10.1111/j.1469-8137.2007.02191.x
  51. Manna RN, Dybala-Defratyka A. 2013. Insights into the elimination mechanisms employed for the degradation of different hexachlorocyclohexane isomers using kinetic isotope effects and docking studies. J. Phys. Org. Chem. 26: 797-804. https://doi.org/10.1002/poc.3163
  52. Ramadhania NR, Purnomo AS, Fatmawati S. 2018. Antibacterial activities of Syzygium polyanthum wight leaves. AIP Conf. Proc. 2049: 020024.
  53. Ramadhania NR, Harun F, Purnomo AS, Fatmawati S. 2019. Anti-oxidant and anti-bacterial activities of Anthurium plowmanii leaves extracts. Mal. J. Fund. Appl. Sci. 15: 194-199. https://doi.org/10.11113/mjfas.v15n2.1040
  54. Johansson J, Paul LR, Finlay RD. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48: 1-13. https://doi.org/10.1016/j.femsec.2003.11.012
  55. Kataoka R, Futai K. 2009. A new mycorrhizal helper bacterium, ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biol. Fertil. Soils 45: 315-320. https://doi.org/10.1007/s00374-008-0340-0
  56. Chang BV, Chang YM. 2016. Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation. J. Microbiol. Immunol. Infect. 49: 175-181. https://doi.org/10.1016/j.jmii.2014.04.012
  57. Varela E, Guillen F, Martinez AT, Martinez MJ. 2001. Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme. Biochim. Biophys. Acta (BBA) - Protein Struc. Mol. Enzymol. 1546: 107-113. https://doi.org/10.1016/S0167-4838(00)00301-0
  58. Guillen F, Martinez AT, Martinez MJ, Evans CS. 1994. Hydrogen-peroxide-producing system of Pleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase. Appl. Microbiol. Biotechnol. 41: 465-470. https://doi.org/10.1007/BF00939037
  59. Ferreira P, Medina M, Guillen F, Martinez MJ, Van Berkel WJH, Martinez AT. 2005. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem. J. 389: 731-738. https://doi.org/10.1042/BJ20041903
  60. Plaza GA, Wypych J, Berry C, Brigmon RL. 2007. Utilization of monocyclic aromatic hydrocarbons individually and in mixture by bacteria isolated from petroleum-contaminated soil. World J. Microbiol. Biotechnol. 23: 533-542. https://doi.org/10.1007/s11274-006-9256-8
  61. Plaza GA, Lukasik K, Wypych J, Jawecki N, Berry C, Brigmo RL. 2008. Biodegradation of crude oil and distillation products by biosurfactant-producing bacteria. Pol. J. Environ. Stud. 17: 87-94.
  62. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A. 2001. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367-1371. https://doi.org/10.1021/la0011735
  63. Teh ZC, Hadibarata T. 2014. Enhanced degradation of pyrene and metabolite identification by Pleurotus eryngii F032. Water Air Soil Pollut. 225: 1909. https://doi.org/10.1007/s11270-014-1909-x
  64. Baschien C, Rode G, Bockelmann U, Gotz P, Szewzyk U. 2009. Interactions between hyphosphere-associated bacteria and the Fungus Cladosporium herbarum on aquatic leaf litter. Microbiol. Ecol. 58: 642-650. https://doi.org/10.1007/s00248-009-9528-6
  65. Green H, Larsen J, Olsson PA, Jensen DF, Jakobsen I. 1999. Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl. Microbiol. Biotechnol. 65: 1428-1434.
  66. Steinberg JP, Burd EM. 2005. Mandell, Douglas, and Bennets Principle and Practice of Infectious Diseases. 8th Edition. Elsevier Inc: Philadelphia.
  67. Subba-Rao RV, Alexander M. 1985. Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its breakdown products. Appl. Environ. Microbiol. 49: 509-516. https://doi.org/10.1128/AEM.49.3.509-516.1985
  68. Baxter GJ, Graham AB, Lawrence JR, Wiles J, Peterson JR. 2001. Salicylic acids in soups prepared from organically and non-organically grown vegetables. Eur. J. Nutr. 40: 289-292. https://doi.org/10.1007/s394-001-8358-x
  69. Foght J, April T, Biggar K, Aisalbie J. 2010. Bioremediation of DDT-contaminated soils: a review. Bioremiat. J. 5: 225-246.
  70. Laili K, Fatati N, Inneke PF, Setyo PA, Mardi S, Taslim E, et al. 2018. In vitro antioxidant activity of Sonneratia ovata backer extract. Res. J. Chem. Environ. 22(Special issue II): 146-150.
  71. Brittain DRB, Pandey R, Kumari K, Sharma P, Pandey G, Lal R, et al. 2011. Competing SN2 and E2 reaction pathways for hexachlorocyclohexane degradation in the gas phase, solution and enzymes. Chem. Commun. 47: 976-978. https://doi.org/10.1039/C0CC02925D
  72. Halasa AF, Massie JM, Ceresa RJ. 2005. The Chemical Modification of Polymers. pp. 497-528. In: Science and Technology of Rubber (Third Edition). Academic Press, New York.
  73. Zhao Y, Yi X, Li M, Liu L, Ma W. 2010. Biodegradation kinetics of DDT in soil under different environmental conditions by laccase extract from white rot fungi. Chinese J. Chem. Eng. 18: 486-492. https://doi.org/10.1016/S1004-9541(10)60247-9
  74. Zhao YC, Yi XY, Zhang M, Liu L, Ma WJ. 2010. Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int. J. Environ. Sci. Technol. 7: 359-366. https://doi.org/10.1007/BF03326145
  75. Masse R, Lalanne D, Messier F, Sylvestre M. 1989. Characterization of new bacterial transformation products of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) by gas chromatography/mass spectrometry. J. Mass Spectrom. 18: 741-752.

Cited by

  1. Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation vol.6, pp.6, 2019, https://doi.org/10.1016/j.heliyon.2020.e04027
  2. Mycoremediation of environmental pollutants: a review with special emphasis on mushrooms vol.4, pp.4, 2019, https://doi.org/10.1007/s42398-021-00197-3