Browse > Article
http://dx.doi.org/10.4014/jmb.1906.06030

Ralstonia pickettii Enhance the DDT Biodegradation by Pleurotus eryngii  

Purnomo, Adi Setyo (Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo)
Maulianawati, Diana (Department of Aquaculture, Faculty of Fisheries and Marine Science, Borneo Tarakan University)
Kamei, Ichiro (Department of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.9, 2019 , pp. 1424-1433 More about this Journal
Abstract
DDT is a hydrophobic organic pollutant, which can be bio-accumulated in nature and have adverse consequences on the physical condition of humans and animals. This study investigated the relationship between the white-rot fungus Pleurotus eryngii and biosurfactant-producing bacterium Ralstonia pickettii associated with the degradation of DDT. The effects of R. pickettii on fungal development were examined using in vitro confrontation assay on a potato dextrose agar (PDA) medium. R. pickettii culture was added to the P. eryngii culture at 1, 3, 5, 7, and 10 ml ($1ml{\approx}1.44{\times}10^{13}CFU$). After 7 d incubation, about 43% of the initial DDT ($12.5{\mu}M$) was degraded by the P. eryngii culture only. The augmentation of 7 ml of R. pickettii culture revealed a more highly optimized synergism with DDT degradation being approximately 78% and the ratio of optimization 1.06. According to the confrontational assay, R. pickettii promoted the growth of P. eryngii towards the bacterial colony, with no direct contact between the bacterial cells and mycelium (0.71 cm/day). DDD (1,1-dichloro-2,2-bis(4-chlorophenyl) ethane), DDE (1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene), and DDMU (1-chloro-2,2-bis(4-chlorophenyl) ethylene) were identified as metabolic products, indicating that the R. pickettii could enhance the DDT biodegradation by P. eryngii.
Keywords
Biodegradation; DDT; bacteria; white-rot fungi; Pleurotus eryngii; Ralstonia pickettii;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sariwati A, and Purnomo, AS. 2018. The effect of Pseudomonas aeruginosa addition on 1,1,1 Trichloro 2,2 bis (4 chlorophenyl) ethane DDT biodegradation by brown-rot fungus Fomitopsis pinicola. Indon. J. Chem. 18: 75-81.   DOI
2 Halasa AF, Massie JM, Ceresa RJ. 2005. The Chemical Modification of Polymers. pp. 497-528. In: Science and Technology of Rubber (Third Edition). Academic Press, New York.
3 Zhao Y, Yi X, Li M, Liu L, Ma W. 2010. Biodegradation kinetics of DDT in soil under different environmental conditions by laccase extract from white rot fungi. Chinese J. Chem. Eng. 18: 486-492.   DOI
4 Zhao YC, Yi XY, Zhang M, Liu L, Ma WJ. 2010. Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int. J. Environ. Sci. Technol. 7: 359-366.   DOI
5 Masse R, Lalanne D, Messier F, Sylvestre M. 1989. Characterization of new bacterial transformation products of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) by gas chromatography/mass spectrometry. J. Mass Spectrom. 18: 741-752.
6 Kamei I, Suhara H, Kondo R. 2005. Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl. Microbiol. Biotechnol. 69: 358-366.   DOI
7 Kamei I, Sonoki S, Haraguchi K, Kondo R. 2006. Fungal bioconversion of toxic polychlorinated biphenyls by whiterot fungus, Phlebia brevispora. Appl. Microbiol. Biotechnol. 73: 932-940.   DOI
8 Kamei I, Takagi K, Kondo R. 2011. Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute. J. Wood Sci. 57: 317-322.   DOI
9 Aust SD. 1990. Degradation of Environmental pollutants by Phanerochaete chrysosporium. Microbiol. Ecol. 20: 197-209.   DOI
10 Pointing SB. 2001. Feasibility of bioremediation by white rot fungi. Appl. Microbiol. Biotechnol. 57: 20-33.   DOI
11 Purnomo AS, Mori T, KameiI, Nishii T, Kondo R. 2010. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT contaminated soil. Int. Biodet. Biodeg. 64: 397-402.   DOI
12 Reddy CA. 1995. The potential for white rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6: 320-328.   DOI
13 Reddy CA, Mathew Z. 2001. Bioremediation potential of white rot fungi. pp. 52-78. In G add GM (ed.), Fungi in bioremediation. Cambridge University Press, London.
14 Bumpus JA, Aust SD. 1987. Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 53: 2011-2008.   DOI
15 Purnomo AS, Mori T, Kamei I, Kondo R. 2011. Basic studies and applications on bioremediation of DDT: A review. Int. Biodet. Biodeg. 65: 921-930.   DOI
16 Hadibarata T, Kristanti RA. 2014. Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorine. Fungal Biol. 118: 222-227.   DOI
17 Purnomo AS, Putra SR, Shimizu K, Kondo R. 2014. Biodegradation of heptachlor and heptachlor epoxidecontaminated soils by white-rot fungal inocula. Environ. Sci. Pollut. Res. 21: 11305-11312.   DOI
18 Kamei I. 2017. Co-culturing effects by coexisting bacteria on wood degradation by Trametes versicolor. Curr. Microbiol. 74: 125-131.   DOI
19 Mille-Lindblom C, Tranvik L. 2003. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microbiol. Ecol. 45: 73-182.
20 Bonfante P, Anca IA. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63: 363-383.   DOI
21 Frey-Klett P, Garbaye J, Tarkka M. 2007. The mycorrhiza helper bacteria revisited. New Phytol. 176: 22-36.   DOI
22 Johansson J, Paul LR, Finlay RD. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48: 1-13.   DOI
23 Manna RN, Dybala-Defratyka A. 2013. Insights into the elimination mechanisms employed for the degradation of different hexachlorocyclohexane isomers using kinetic isotope effects and docking studies. J. Phys. Org. Chem. 26: 797-804.   DOI
24 Ramadhania NR, Purnomo AS, Fatmawati S. 2018. Antibacterial activities of Syzygium polyanthum wight leaves. AIP Conf. Proc. 2049: 020024.
25 Ramadhania NR, Harun F, Purnomo AS, Fatmawati S. 2019. Anti-oxidant and anti-bacterial activities of Anthurium plowmanii leaves extracts. Mal. J. Fund. Appl. Sci. 15: 194-199.   DOI
26 Grizca BE, Setyo PA. 2018. Abilities of co-cultures of whiterot fungus Ganoderma lingzhi and bacteria Bacillus subtilis on Biodegradation DDT. J. Physics Conf. Series 1095: 102015.
27 Purnomo AS, Ashari K, Hermansyah F. 2017. Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. J. Microbiol. Biotechnol. 27: 1306-1315.   DOI
28 Arisoy M. 1998. Biodegradation of chlorinated organic compounds by white-rot fungi. Bull. Environ. Contam. Toxicol. 60: 872-876.   DOI
29 Purnomo AS, Fajriah 2017. Pengaruh penambahan Bacillus subtilis pada biodegradasi DDT Oleh Phlebia brevispora. Akta Kim. Indones. 2: 58-65.   DOI
30 Xiao P, Mori T, Kamei I, Kondo R. 2011. A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation 22: 859-867.   DOI
31 Purnomo AS, Kamei I, Kondo R. 2008. Degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) (DDT) by brownrot fungi. J. Biosci. Bioeng. 105: 614-621.   DOI
32 Purnomo AS, Mori T, Kondo R. 2010. Involvement of fenton reaction in DDT degradation by brown rot fungi. Int. Biodeterior. Biodegradation 64: 560-565.   DOI
33 Purnomo AS, Mori T, Takagi K, Kondo R. 2011. Bioremediation of DDT contaminated soil using brown-rot fungi. Int. Biodeterior. Biodegradation 65: 691-695.   DOI
34 Kamei I, Yoshida T, Enami D, Meguro S. 2012. Coexisting Curtobacterium bacterium promotes growth of white-rot fungus Stereum sp. Curr. Microbiol. 64: 173-178.   DOI
35 Clausen CA. 1996. Bacterial association with decaying wood: A review. Int. Biodeterior. Biodegradation. 37: 101-107.   DOI
36 Ferreira P, Medina M, Guillen F, Martinez MJ, Van Berkel WJH, Martinez AT. 2005. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem. J. 389: 731-738.   DOI
37 Kataoka R, Futai K. 2009. A new mycorrhizal helper bacterium, ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biol. Fertil. Soils 45: 315-320.   DOI
38 Chang BV, Chang YM. 2016. Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation. J. Microbiol. Immunol. Infect. 49: 175-181.   DOI
39 Varela E, Guillen F, Martinez AT, Martinez MJ. 2001. Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme. Biochim. Biophys. Acta (BBA) - Protein Struc. Mol. Enzymol. 1546: 107-113.   DOI
40 Guillen F, Martinez AT, Martinez MJ, Evans CS. 1994. Hydrogen-peroxide-producing system of Pleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase. Appl. Microbiol. Biotechnol. 41: 465-470.   DOI
41 Plaza GA, Wypych J, Berry C, Brigmon RL. 2007. Utilization of monocyclic aromatic hydrocarbons individually and in mixture by bacteria isolated from petroleum-contaminated soil. World J. Microbiol. Biotechnol. 23: 533-542.   DOI
42 Plaza GA, Lukasik K, Wypych J, Jawecki N, Berry C, Brigmo RL. 2008. Biodegradation of crude oil and distillation products by biosurfactant-producing bacteria. Pol. J. Environ. Stud. 17: 87-94.
43 Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A. 2001. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367-1371.   DOI
44 McClay K, Fox BG, Steffan RJ. 1996. Chloroform mineralization by toluene oxidizing bacteria. Appl. Environ. Microbiol. 62: 2716-2722.   DOI
45 Kukor JJ, Olsen RH. 1992. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PK01. J. Bacteriol. 174: 6518-6526.   DOI
46 Massol-Deya A, Weller R, Rios-Hernandez L, Zhou JZ, Hickey RF, Tiedje JM. 1997. Succession and convergence of biofilm communities in fixed-film reactors aromatic hydrocarbons in groundwater. Appl. Environ. Microbiol. 63: 270-27.   DOI
47 Ryan MP, Pembroke JT, Adles C. 2007. Ralstonia pickettii in environmental biotechnology: potential and applications. J. Appl. Microbiol. 103: 754-64.   DOI
48 Kiyohara H, Hatta T, Ogawa Y, Kakuda T, Yokoyama H, Takizawa N. 1992. Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Appl. Environ. Microbiol. 58: 1276-1283.   DOI
49 Yabannavar AV, Zylstra GJ. 1995. Cloning and characterization of the fenes for p-nitrobenzoate degradation from Pseudomonas pickettii YH105. Appl. Environ. Microbiol. 61: 4284-4290.   DOI
50 Sharma OP, Dawra RK, Datta AK, Kanwar SS. 1997. Biodegradation of Lantadene A, The Pentacyclic Triterpenoid Hepatotoxin by Pseudomonas pickettii. Lett. Appl. Microbiol. 24: 229-232.   DOI
51 Kahng HY, Byrne AM, Olsen RH, Kukor JJ. 2000. Characterization and Role of tbuX in Utilization of Toluene by Ralstonia pickettii PKO1. J. Bacteriol. 182: 1232-1242.   DOI
52 Setyo PA, Dwi RH, Sri F, Sulistyo PH, Ichiro K. 2018. Effects of bacterium Ralstonia pickettii addition on DDT biodegradation by Daedalea dickinsii. Res. J. Chem. Environ. 22(Special issue II): 151-156.
53 Steinberg JP, Burd EM. 2005. Mandell, Douglas, and Bennets Principle and Practice of Infectious Diseases. 8th Edition. Elsevier Inc: Philadelphia.
54 Teh ZC, Hadibarata T. 2014. Enhanced degradation of pyrene and metabolite identification by Pleurotus eryngii F032. Water Air Soil Pollut. 225: 1909.   DOI
55 Baschien C, Rode G, Bockelmann U, Gotz P, Szewzyk U. 2009. Interactions between hyphosphere-associated bacteria and the Fungus Cladosporium herbarum on aquatic leaf litter. Microbiol. Ecol. 58: 642-650.   DOI
56 Green H, Larsen J, Olsson PA, Jensen DF, Jakobsen I. 1999. Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl. Microbiol. Biotechnol. 65: 1428-1434.
57 Subba-Rao RV, Alexander M. 1985. Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its breakdown products. Appl. Environ. Microbiol. 49: 509-516.   DOI
58 Baxter GJ, Graham AB, Lawrence JR, Wiles J, Peterson JR. 2001. Salicylic acids in soups prepared from organically and non-organically grown vegetables. Eur. J. Nutr. 40: 289-292.   DOI
59 Foght J, April T, Biggar K, Aisalbie J. 2010. Bioremediation of DDT-contaminated soils: a review. Bioremiat. J. 5: 225-246.
60 Laili K, Fatati N, Inneke PF, Setyo PA, Mardi S, Taslim E, et al. 2018. In vitro antioxidant activity of Sonneratia ovata backer extract. Res. J. Chem. Environ. 22(Special issue II): 146-150.
61 Brittain DRB, Pandey R, Kumari K, Sharma P, Pandey G, Lal R, et al. 2011. Competing SN2 and E2 reaction pathways for hexachlorocyclohexane degradation in the gas phase, solution and enzymes. Chem. Commun. 47: 976-978.   DOI
62 Chu W. 1999. Photodechlorination mechanism of DDT in a UV/Surfactant system. Environ. Sci. Technol. 33: 421-425.   DOI
63 Sudaryanto A, Takahashi S, Tanabe S. 2007. Persistent toxic substances in the environment of Indonesia. Dev. Environ. Sci. 7: 587-627.
64 Kinuthia M, Hamadi IB, Anne WM, Ciira K, Muniru KT. 2010. Degradation of dichlorodiphenyltrichloroethane (DDT) by bacterial isolates from cultivated and uncultivated soil. Afr. J. Microbiol. Res. 4: 185-196.
65 Tsakiris IN, Goumenou G, Tzatzarakis MN, Alegakis AK, Tsitsimpikou C, Ozcagli E, et al. 2015. Risk assessment for children exposed to DDT residues in various milk types from the Greek market. Food Chem. Toxicol. 75: 156-165.   DOI
66 Rizqi HD, Purnomo AS. 2017. The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye. World J. Microbiol. Biotechnol. 33: 92.   DOI
67 Matsunaga A, Yasuhara A. 2005. Dechlorination of polychlorinated organic compounds by electrochemical reduction with naphthalene radical anion as mediator. Chemosphere 59: 1487-1496.   DOI
68 Sayles GD, You GR, Wang MX, Kuperferle MJ. 1997. DDT, DDD and DDE Dechlorination by zero-valent iron. Environ. Sci. Technol. 31: 3448-3454.   DOI
69 Purnomo AS. 2017. Microbe-assisted degradation of aldrin and dieldrin. In Singh SN (ed.), Microbe-Induced Degradation of Pesticides, pp. 1-22. 1st edn. Springer Nature, Switzerland.
70 Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I. 2017. Biodegradation of aldrin and dieldrin by the white-rot fungus Pleurotus ostreatus. Curr. Microbiol. 74: 320-324.   DOI
71 Purnomo AS, Koyama F, Mori T, Kondo R. 2010. DDT degradation potential of cattle manure compost. Chemosphere 80: 619-624.   DOI
72 Purnomo AS, Mori T, Putra SR, Kondo R. 2013. Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int. Biodeterior. Biodegradation 82: 40-44.   DOI
73 Wahyuni S, Suhartono MT, Khaeruni A, Purnomo AS, Asranudin, Holilah, et al. 2016. Purification and characterization of thermostable chitinase from Bacillus SW41 for chitin oligomer production. Asian J. Chem. 28: 2731-2736.   DOI
74 Wahyuni S, Khaeruni A, Purnomo AS, Asranudin, Holilah, Fatahu 2017. Characterization of mannanase isolated from corncob waste bacteria. Asian J. Chem. 29: 1119-1120.   DOI
75 Sariwati A, Purnomo, AS, Kamei I. 2017. Abilities of cocultures of brown-rot fungus Fomitopsis pinicola and Bacillus subtilis on biodegradation DDT. Curr. Microbiol. 74: 1068-1069.   DOI