참고문헌
- Keck A, Klein J, Kudlich M, Stolz A, Knackmuss H-J, Mattes R. 1997. Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl. Environ. Microbiol. 63: 3684-3690. https://doi.org/10.1128/AEM.63.9.3684-3690.1997
- Robinson T, McMullan G, Marchant R, Nigam P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77: 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8
- Pandey A, Singh P, Iyengar L. 2007. Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegradation 59: 73-84. https://doi.org/10.1016/j.ibiod.2006.08.006
- Zaharia C, Suteu D, Muresan A. 2012. Options and solutions for textile effluent decolorization using some specific physico-chemical treatment steps. Environ. Eng. Manag. J. 11: 493-509. https://doi.org/10.30638/eemj.2012.062
- Cho EA, Seo J, Lee DW, Pan JG. 2011. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Microb Technol. 49: 100-104. https://doi.org/10.1016/j.enzmictec.2011.03.005
- Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. 2010. Laccases: a never-ending story. Cell Mol. Life Sci. 67: 369-385. https://doi.org/10.1007/s00018-009-0169-1
- Yoshida H. 1883. LXIII.-chemistry of lacquer (Urushi). Part I. communication from the chemical society of Tokio. J. Chem. Soc. Trans. 43: 472-486. https://doi.org/10.1039/CT8834300472
- Loncar N, Bozic N, Lopez-Santin J, Vujcic Z. 2013. Bacillus amyloliquefaciens laccase-from soil bacteria to recombinant enzyme for wastewater decolorization. Bioresour. Technol. 147: 177-183. https://doi.org/10.1016/j.biortech.2013.08.056
- Riva S. 2006. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 24: 219-226. https://doi.org/10.1016/j.tibtech.2006.03.006
- Widsten P, Kandelbauer A. 2008. Laccase applications in the forest products industry: a review. Enzyme Microb. Technol. 42: 293-307. https://doi.org/10.1016/j.enzmictec.2007.12.003
- Givaudan A, Effosse A, Faure D, Potier P, Bouillant M-L, Bally R. 1993. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol. Lett. 108: 205-210. https://doi.org/10.1111/j.1574-6968.1993.tb06100.x
- Sharma P, Goel R, Capalash N. 2007. Bacterial laccases. World J. Microbiol. Biotechnol. 23: 823-832. https://doi.org/10.1007/s11274-006-9305-3
- Cha JS, Cooksey DA. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 88: 8915-8919. https://doi.org/10.1073/pnas.88.20.8915
- Hsiao YM, Liu YF, Lee PY, Hsu PC, Tseng SY, Pan YC. 2011. Functional characterization of copA gene encoding multicopper oxidase in Xanthomonas campestris pv. campestris. J. Agric. Food Chem. 59: 9290-9302. https://doi.org/10.1021/jf2024006
- Diamantidis G, Effosse A, Potier P, Bally R. 2000. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem. 32: 919-927. https://doi.org/10.1016/S0038-0717(99)00221-7
- Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K. 2003. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J. Biochem. 133: 671-677. https://doi.org/10.1093/jb/mvg086
- Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, et al. 2002. Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 2766-2771. https://doi.org/10.1073/pnas.052710499
- Durao P, Chen Z, Fernandes AT, Hildebrandt P, Murgida DH, Todorovic S, et al. 2008. Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J. Biol. Inorg. Chem. 13: 183-193. https://doi.org/10.1007/s00775-007-0312-0
- Dube E, Shareck F, Hurtubise Y, Daneault C, Beauregard M. 2008. Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl. Microbiol. Biotechnol. 79: 597-603. https://doi.org/10.1007/s00253-008-1475-5
- Gopinath KP, Murugesan S, Abraham J, Muthukumar K. 2009. Bacillus sp. mutant for improved biodegradation of Congo red: random mutagenesis approach. Bioresour. Technol. 100: 6295-6300. https://doi.org/10.1016/j.biortech.2009.07.043
- Wu J, Kim K-S, Sung N-C, Kim C-H, Lee Y-C. 2009. Isolation and characterization of Shewanella oneidensis WL-7 capable of decolorizing azo dye reactive Black 5. J. Gen. Appl. Microbiol. 55: 51-55. https://doi.org/10.2323/jgam.55.51
- Kalyani DC, Telke AA, Govindwar SP, Jadhav JP. 2009. Biodegradation and detoxification of reactive textile dye by isolated Pseudomonas sp. SUK1. Water Environ. Res. 81: 298-307. https://doi.org/10.2175/106143008X357147
- Zhang Y, Dong W, Lv Z, Liu J, Zhang W, Zhou J, et al. 2018. Surface display of bacterial Laccase CotA on Escherichia coli cells and its application in industrial dye decolorization. Mol. Biotechnol. 60: 681-689. https://doi.org/10.1007/s12033-018-0103-6
- Freudl R, MacIntyre S, Degen M, Henning U. 1986. Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. J. Mol. Biol. 188: 491-494. https://doi.org/10.1016/0022-2836(86)90171-3
- Kim J, Schumann W. 2009. Display of proteins on Bacillus subtilis endospores. Cell Mol. Life Sci. 66: 3127-3136. https://doi.org/10.1007/s00018-009-0067-6
- Kondo A, Ueda M. 2004. Yeast cell-surface display--applications of molecular display. Appl. Microbiol Biotechnol. 64: 28-40. https://doi.org/10.1007/s00253-003-1492-3
- Ventura M, Jankovic I, Walker DC, Pridmore RD, Zink R. 2002. Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri. Appl. Environ. Microbiol. 68: 6172-6181. https://doi.org/10.1128/AEM.68.12.6172-6181.2002
- Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, et al. 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2: e328. https://doi.org/10.1371/journal.pbio.0020328
- Kim JH, Lee CS, Kim BG. 2005. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210-214. https://doi.org/10.1016/j.bbrc.2005.03.144
- Sunde EP, Setlow P, Hederstedt L, Halle B. 2009. The physical state of water in bacterial spores. Proc. Natl. Acad. Sci. USA 106: 19334-19339. https://doi.org/10.1073/pnas.0908712106
- Kawamura F, Doi RH. 1984. Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol. 160: 442-444. https://doi.org/10.1128/JB.160.1.442-444.1984
- Kim J-H, Choi S-K, Jung H-C, Pan J-G, Kim B-G. 2011. Bacterial surface display of Levansucrase of Zymomonas mobilis using Bacillus Subtilis spore display system. KSBB J. 26: 243-247. https://doi.org/10.7841/ksbbj.2011.26.3.243
- Asgher M, Yasmeen Q, Iqbal HM. 2013. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J. Biol. Sci. 20: 347-352. https://doi.org/10.1016/j.sjbs.2013.03.004
- Guoyan Z, Yingfeng A, Zabed H, Qi G, Yang M, Jiao Y, et al. 2019. Bacillus subtilis spore surface display technology: A review of its development and applications. J. Microbiol. Biotechnol. 29: 179-190. https://doi.org/10.4014/jmb.1807.06066
- Little S, Driks A. 2001. Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE. Mol. Microbiol. 42: 1107-1120. https://doi.org/10.1046/j.1365-2958.2001.02708.x
-
Hwang B-Y, Pan J-G, Kim B-G, Kim J-H. 2013. Functional display of active tetrameric
${\beta}$ -galactosidase using Bacillus subtilis spore display system. J. Nanosci. Nanotechnol. 13: 2313-2319. https://doi.org/10.1166/jnn.2013.6889 - Hosseini?Abari A, Kim BG, Lee SH, Emtiazi G, Kim W, Kim JH. 2016. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. J. Basic Microbiol. 56: 1331-1337. https://doi.org/10.1002/jobm.201600203
- Giglio R, Fani R, Isticato R, De Felice M, Ricca E, Baccigalupi L. 2011. Organization and evolution of the cotG and cotH genes of Bacillus subtilis. J. Bacteriol. 193: 6664-6673. https://doi.org/10.1128/JB.06121-11
- Laaberki MH, Dworkin J. 2008. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J. Bacteriol. 190: 6197-6203. https://doi.org/10.1128/JB.00623-08
-
Hwang B-Y, Kim B-G, Kim J-H. 2011. Bacterial surface display of a co-factor containing enzyme,
${\omega}$ -transaminase from vibrio fluvialis using the Bacillus subtilis spore display system. Biosci. Biotechnol. Biochem. 75: 1862-1865. https://doi.org/10.1271/bbb.110307 - Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, et al. 2017. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic. Biochem. Physiol. 140: 17-23. https://doi.org/10.1016/j.pestbp.2017.05.008
- Guo Q, An Y, Yun J, Yang M, Magocha TA, Zhu J, et al. 2018. Enhanced d-tagatose production by spore surfacedisplayed l-arabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. Bioresour. Technol. 247: 940-946. https://doi.org/10.1016/j.biortech.2017.09.187
- McKenney PT, Driks A, Eskandarian HA, Grabowski P, Guberman J, Wang KH, et al. 2010. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr. Biol. 20: 934-938. https://doi.org/10.1016/j.cub.2010.03.060
- Liu H, Krajcikova D, Zhang Z, Wang H, Barak I, Tang J. 2015. Investigating interactions of the Bacillus subtilis spore coat proteins CotY and CotZ using single molecule force spectroscopy. J. Struct. Biol. 192: 14-20. https://doi.org/10.1016/j.jsb.2015.09.001
-
Wang H, Yang R, Hua X, Zhao W, Zhang W. 2015. Functional display of active
${\beta}$ -galactosidase on Bacillus subtilis spores using crust proteins as carriers. Food Sci. Biotechnol. 24: 1755-1759. https://doi.org/10.1007/s10068-015-0228-3 - Ghasemi Y, Yarahmadi E, Ghoshoon M, Dabbagh F, Hajighahramani N, Ebrahimi N, et al. 2014. Cloning, expression and purification of laccase enzyme gene from Bacillus subtilis in Escherichia coli. Minerva Biotechnol. 26: 295-300.
- Hullo M-F, Moszer I, Danchin A, Martin-Verstraete I. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183: 5426-5430. https://doi.org/10.1128/JB.183.18.5426-5430.2001
- Benkhaya S, El Harfi S, El Harfi A. 2017. Classifications, properties and applications of textile dyes: A review. Appl. J. Environ. Eng. Sci. 3: 311-320.
- Wang W, Zhang Z, Ni H, Yang X, Li Q, Li L. 2012. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb. Cell Fact. 11: 75. https://doi.org/10.1186/1475-2859-11-75
- Murugesan K, Arulmani M, Nam IH, Kim YM, Chang YS, Kalaichelvan PT. 2006. Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes. Appl. Microbiol. Biotechnol. 72: 939-946. https://doi.org/10.1007/s00253-006-0403-9
- Cho E-A, Seo J, Lee D-W, Pan J-G. 2011. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Microb. Technol. 49: 100-104. https://doi.org/10.1016/j.enzmictec.2011.03.005
- Wang T-N, Zhao M. 2017. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase. Appl. Microbiol. Biotechnol. 101: 685-696. https://doi.org/10.1007/s00253-016-7897-6
- Guo H, Zheng B, Jiang D, Qin W. 2017. Overexpression of a laccase with dye decolorization activity from Bacillus sp. induced in Escherichia coli. J. Mol. Microbiol. Biotechnol. 27: 217-227. https://doi.org/10.1159/000478859
- Enguita FJ, Matias PM, Martins LO, Placido D, Henriques AO, Carrondo MA. 2002. Spore-coat laccase CotA from Bacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method. Acta Crystallogr. D Biol. Crystallogr. 58(Pt 9): 1490-1493. https://doi.org/10.1107/S0907444902011575
- Couto SR, Herrera L. 2006. Inhibitors of laccases: a review. Curr. Enzym. Inhib. 2: 343-352. https://doi.org/10.2174/157340806778699262