참고문헌
- Abu-Omar MM, Loaiza A, Hontzeas N. 2005. Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem. Rev. 105: 2227-2252. https://doi.org/10.1021/cr040653o
- Flatmark T, Stevens RC. 1999. Structural insight into the aromatic amino acid hydroxylases and their disease-related mutant forms. Chem. Rev. 99: 2137-2160. https://doi.org/10.1021/cr980450y
- Keil S, Anjema K, van Spronsen F, Lambruschini N, Burlina A, Belanger-Quintana A, et al. 2013. Longterm follow-up and outcome of phenylketonuria patients on sapropterin: a retrospective study. Pediatrics 131: e1881-1888. https://doi.org/10.1542/peds.2012-3291
- Levy HL, Milanowski A, Chakrapani A, Cleary M, Lee P, Trefz FK, et al. 2007. Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study. Lancet 370: 504-510. https://doi.org/10.1016/S0140-6736(07)61234-3
- Muntau AC, Roschinger W, Habich M, Demmelmair H, Hoffmann B, Sommerhoff CP, et al. 2002. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N. Engl. J. Med. 347: 2122-2132. https://doi.org/10.1056/NEJMoa021654
- Zhu T, Ye J, Han L, Qiu W, Zhang H, Liang L, et al. 2017. The predictive value of genetic analyses in the diagnosis of tetrahydrobiopterin (BH4)-responsiveness in Chinese phenylalanine hydroxylase deficiency patients. Sci. Rep. 7: 6762. https://doi.org/10.1038/s41598-017-06462-y
- Nakata H, Yamauchi T, Fujisawa H. 1979. Phenylalanine hydroxylase from Chromobacterium violaceum. purification and characterization. J. Biol. Chem. 254: 1829-1833. https://doi.org/10.1016/S0021-9258(17)37730-X
- Onishi A, Liotta LJ, Benkovic SJ. 1991. Cloning and expression of Chromobacterium violaceum phenylalanine hydroxylase in Escherichia coli and comparison of amino acid sequence with mammalian aromatic amino acid hydroxylases. J. Biol. Chem. 266: 18454-18459. https://doi.org/10.1016/S0021-9258(18)55083-3
- Erlandsen H, Kim JY, Patch MG, Han A, Volner A, Abu-Omar MM, et al. 2002. Structural comparison of bacterial and human iron-dependent phenylalanine hydroxylases: similar fold, different stability and reaction rates. J. Mol. Biol. 320: 645-661. https://doi.org/10.1016/S0022-2836(02)00496-5
- Zoidakis J, Loaiza A, Vu K, Abu-Omar MM. 2005. Effect of temperature, pH, and metals on the stability and activity of phenylalanine hydroxylase from Chromobacterium violaceum. J. Inorg. Biochem. 99: 771-775. https://doi.org/10.1016/j.jinorgbio.2004.12.017
- Carr RT, Balasubramanian S, Hawkins PC, Benkovic SJ. 1995. Mechanism of metal-independent hydroxylation by Chromobacterium violaceum phenylalanine hydroxylase. Biochemistry 34: 7525-7532. https://doi.org/10.1021/bi00022a028
- Subedi BP, Fitzpatrick PF. 2016. Kinetic mechanism and intrinsic rate constants for the reaction of a bacterial phenylalanine hydroxylase. Biochemistry 55: 6848-6857. https://doi.org/10.1021/acs.biochem.6b01012
- Zoidakis J, Sam M, Volner A, Han A, Vu K, Abu-Omar MM. 2004. Role of the second coordination sphere residue tyrosine 179 in substrate affinity and catalytic activity of phenylalanine hydroxylase. J. Biol. Inorg. Chem. 9: 289-296. https://doi.org/10.1007/s00775-004-0527-2
- Ronau JA, Paul LN, Fuchs JE, Liedl KR, Abu-Omar MM, Das C. 2014. A conserved acidic residue in phenylalanine hydroxylase contributes to cofactor affinity and catalysis. Biochemistry 53: 6834-6848. https://doi.org/10.1021/bi500734h
- Kino K, Hara R, Nozawa A. 2009. Enhancement of L-tryptophan 5-hydroxylation activity by structure-based modification of L-phenylalanine 4-hydroxylase from Chromobacterium violaceum. J. Biosci. Bioeng. 108: 184-189. https://doi.org/10.1016/j.jbiosc.2009.04.002
- Yew NS, Dufour E, Przybylska M, Putelat J, Crawley C, Foster M, et al. 2013. Erythrocytes encapsulated with phenylalanine hydroxylase exhibit improved pharmacokinetics and lowered plasma phenylalanine levels in normal mice. Mol. Genet. Metab. 109: 339-344. https://doi.org/10.1016/j.ymgme.2013.05.011
- Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. 2005. Scalable molecular dynamics with NAMD. J. Computat. Chem. 26: 1781-1802. https://doi.org/10.1002/jcc.20289
- MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, et al. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102: 3586-3616. https://doi.org/10.1021/jp973084f
- Yan M, Sha Y, Wang J, Xiong X, JH R, Cheng M. 2008. Molecular dynamics simulations of HIV-1 protease monomer: Assembly of N-terminus and C-terminus into bsheet in water solution. Proteins 70: 731-738. https://doi.org/10.1002/prot.21539
- Tian J, Wang P, Gao S, Chu X, Wu N, Fan Y. 2010. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. FEBS J. 277: 4901-4908. https://doi.org/10.1111/j.1742-4658.2010.07895.x
- Ge M, Pan XM. 2009. The contribution of proline residues to protein stability is associated with isomerization equilibrium in both unfolded and folded states. Extremophiles 13: 481-489. https://doi.org/10.1007/s00792-009-0233-7
- Kazlauskas R. 2018. Engineering more stable proteins. Chem. Soc. Rev. 47: 9026-9045. https://doi.org/10.1039/C8CS00014J
-
Huang J, Jones BJ, Kazlauskas RJ. 2015. Stabilization of an
${\alpha}$ /${\beta}$ -hydrolase by introducing proline residues: salicylic acid binding protein 2 from tobacco. Biochemistry 54: 4330-4341. https://doi.org/10.1021/acs.biochem.5b00333 -
Singh MK, Shivakumaraswamy S, Gummadi SN, Manoj N. 2017. Role of an N-terminal extension in stability and catalytic activity of a hyperthermostable
${\alpha}$ /${\beta}$ hydrolase fold esterase. Protein Eng. Des. Sel. 30: 559-570. https://doi.org/10.1093/protein/gzx049 - Stojanovski BM, Breydo L, Uversky VN, Ferreira GC. 2016. Murine erythroid 5-aminolevulinate synthase: Truncation of a disordered N-terminal extension is not detrimental for catalysis. Biochim. Biophys. Acta 1864: 441-452. https://doi.org/10.1016/j.bbapap.2016.02.002