DOI QR코드

DOI QR Code

Effect of Acetic Acid on Bacteriocin Production by Gram-Positive Bacteria

  • Ge, Jingping (Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University) ;
  • Kang, Jie (Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University) ;
  • Ping, Wenxiang (Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University)
  • Received : 2019.05.27
  • Accepted : 2019.07.20
  • Published : 2019.09.28

Abstract

Acetic acid is indirectly involved in cell center metabolism, and acetic acid metabolism is the core of central metabolism, affecting and regulating the production of bacteriocin. Bacteriocin is a natural food preservative that has been used in the meat and dairy industries and winemaking. In this paper, the effects of acetic acid on bacteriocin produced by Gram-positive bacteria were reviewed. It was found that acetic acid in the undissociated state can diffuse freely through the hydrophobic layer of the membrane and dissociate, affecting the production, yield, and activity of bacteriocin. In particular, the effect of acetic acid on cell membranes is summarized. The link between acetic acid metabolism, quorum sensing, and bacteriocin production mechanisms is also highlighted.

Keywords

References

  1. Lopez-Cuellar MdR, Rodriguez-Hernandez A-I, Chavarria-Hernandez N. 2016. LAB bacteriocin applications in the last decade. Biotechnol. Biotechnol. Equip. 30: 1039-1050. https://doi.org/10.1080/13102818.2016.1232605
  2. Kaktcham PM, Temgoua JB, Ngoufack Zambou F, Diaz-Ruiz G, Wacher C, Perez-Chabela ML. 2017. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria. World. J. Microbiol. Biotechnol. 33: 32. https://doi.org/10.1007/s11274-016-2197-y
  3. Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, et al. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 4173-4179. https://doi.org/10.1128/JB.182.15.4173-4179.2000
  4. Jia FF, Zheng HQ, Sun SR, Pang XH, Liang Y, Shang JC, et al. 2018. Role of luxs in stress tolerance and adhesion ability in Lactobacillus plantarum KLDS1.0391. Biomed. Res. Int. 2018: 4506829.
  5. Dobson A, Cotter PD, Ross RP, Hill C. 2012. Bacteriocin production: a probiotic trait? Appl. Environ. Microbiol. 78: 1-6. https://doi.org/10.1128/AEM.05576-11
  6. Blanchard AE, Liao C, Lu T. 2016. An ecological understanding of quorum sensing-controlled bacteriocin synthesis. Cell. Mol. Bioeng. 9: 443-454. https://doi.org/10.1007/s12195-016-0447-6
  7. Maldonado-Barragan A, Caballero-Guerrero B, Lucena-Padros H, Ruiz-Barba JL. 2013. Induction of bacteriocin production by coculture is widespread among plantaricinproducing Lactobacillus plantarum strains with different regulatory operons. Food Microbiol. 33: 40-47. https://doi.org/10.1016/j.fm.2012.08.009
  8. Ge J, Fang B, Wang Y, Song G, Ping W. 2014. Bacillus subtilis enhances production of Paracin1. 7, a bacteriocin produced by Lactobacillus paracasei HD1-7, isolated from Chinese fermented cabbage. Ann. Microbiol. 64: 1735-1743. https://doi.org/10.1007/s13213-014-0817-z
  9. Moreno-Gamez S, Sorg RA, Domenech A, Kjos M, Weissing FJ, van Doorn GS, et al. 2017. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat. Commun. 8: 854. https://doi.org/10.1038/s41467-017-00903-y
  10. Talagrand-Reboul E, Jumas-Bilak E, Lamy B. 2017. The social life of Aeromonas through biofilm and quorum sensing systems. Front. Microbiol. 8: 37.
  11. Paczkowski JE, Mukherjee S, McCready AR, Cong JP, Aquino CJ, Kim H, et al. 2017. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 292: 4064-4076. https://doi.org/10.1074/jbc.M116.770552
  12. Johnson EM, Jung DY, Jin DY, Jayabalan DR, Yang DSH, Suh JW. 2018. Bacteriocins as food preservatives: challenges and emerging horizons. Crit. Rev. Food. Sci. 58: 2743-2767. https://doi.org/10.1080/10408398.2017.1340870
  13. Abbasiliasi S, Ramanan RN, Ibrahim TAT, Mustafa S, Mohamad R, Daud HHM, et al. 2014. Effect of medium composition and culture condition on the production of bacteriocin-like inhibitory substances (BLIS) by Lactobacillus paracaseiLA07, a strain isolated from Budu. Biotechnol. Biotechnol. Equip. 25: 2652-2657. https://doi.org/10.5504/BBEQ.2011.0101
  14. De Kwaadsteniet M, Todorov SD, Knoetze H, Dicks LM. 2005. Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Grampositive and Gram-negative bacteria. Int. J. Food Microbiol. 105: 433-444. https://doi.org/10.1016/j.ijfoodmicro.2005.03.021
  15. Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, et al. 2018. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB. Express. 8: 10. https://doi.org/10.1186/s13568-018-0536-0
  16. Agaliya PJ, Jeevaratnam K. 2013. Characterisation of the bacteriocins produced by two probiotic Lactobacillus isolates from idli batter. Ann. Microbiol. 63: 1525-1535. https://doi.org/10.1007/s13213-013-0616-y
  17. Embaby AM, Heshmat Y, Hussein A, Marey HS. 2014. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain. Scientific World Journal 2014: 1-16.
  18. Lozo J, Vukasinovic M, Strahinic I, Topisirovic L. 2004. Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei subsp. paracasei BGBUK2-16. J. Food Prot. 67: 2727-2734. https://doi.org/10.4315/0362-028X-67.12.2727
  19. Nilsson L, Nielsen MK, Ng Y, Gram L. 2002. Role of acetate in production of an autoinducible class iia bacteriocin in Carnobacterium piscicola A9b. Appl. Environ. Microbiol. 68: 2251-2260. https://doi.org/10.1128/AEM.68.5.2251-2260.2002
  20. Cabo ML, Braber AF, Koenraad PM. 2002. Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor is due to acetic acid in the medium. J. Food Prot. 65: 1309-1316. https://doi.org/10.4315/0362-028X-65.8.1309
  21. Casal M, Paiva S, Queiros O, Soares-Silva I. 2008. Transport of carboxylic acids in yeasts. FEMS Microbiol. Rev. 32: 974-994. https://doi.org/10.1111/j.1574-6976.2008.00128.x
  22. Mols M, Abee T. 2008. Role of ureolytic activity in Bacillus cereus nitrogen metabolism and acid survival. Appl. Environ. Microbiol. 74: 2370-2378. https://doi.org/10.1128/AEM.02737-07
  23. Hosein AM, Breidt F, Jr., Smith CE. 2011. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7. Appl. Environ. Microbiol. 77: 889-895. https://doi.org/10.1128/AEM.02136-10
  24. Xiao KK, Guo CH, Zhou Y, Maspolim Y, Wang JY, Ng WJ. 2013. Acetic acid inhibition on methanogens in a two-phase anaerobic process. Biochem. Eng. J. 75: 1-7. https://doi.org/10.1016/j.bej.2013.03.011
  25. Lund P, Tramonti A, De Biase D. 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38: 1091-1125. https://doi.org/10.1111/1574-6976.12076
  26. Woo JM, Kim JW, Song JW, Blank LM, Park JB. 2016. Activation of the glutamic acid-dependent acid resistance system in Escherichia coli BL21(DE3) leads to increase of the fatty acid biotransformation activity. PLoS One 11: e0163265. https://doi.org/10.1371/journal.pone.0163265
  27. Gao C, Zheng Y. 2018. Control of acetic acid metabolism of recombinant Yarrowia lipolytica for efficient succinic acid production. Chin. J. Biotechnol. 34: 389-395.
  28. Adachi K, Ohtani K, Kawano M, Singh RP, Yousuf B, Sonomoto K, et al. 2018. Metabolic dependent and independent pH-drop shuts down VirSR quorum sensing in Clostridium perfringens. J. Biosci. Bioeng. 125: 525-531. https://doi.org/10.1016/j.jbiosc.2017.12.019
  29. Fernandez I, Sycz G, Goldbaum FA, Carrica MDC. 2018. Acidic pH triggers the phosphorylation of the response regulator NtrX in alphaproteobacteria. PLoS One 13: e0194486. https://doi.org/10.1371/journal.pone.0194486
  30. Wang J, Hao C, Huang H, Tang W, Zhang J, Wang C. 2018. Acetic acid production by the newly isolated Pseudomonas sp. CSJ-3. Braz. J. Chem. Eng. 35: 1-9. https://doi.org/10.1590/0104-6632.20180351s20160500
  31. Peeters SH, de Jonge MI. 2018. For the greater good: Programmed cell death in bacterial communities. Microbiol. Res. 207: 161-169. https://doi.org/10.1016/j.micres.2017.11.016
  32. Ding J, Holzwarth G, Penner MH, Patton-Vogt J, Bakalinsky AT. 2015. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS. Microbiol. Lett. 362: 1-7.
  33. Lyon GJ, Novick RP. 2004. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25: 1389-1403. https://doi.org/10.1016/j.peptides.2003.11.026
  34. Mhatre E, Monterrosa RG, Kovacs AT. 2014. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. J. Basic. Microbiol. 54: 616-632. https://doi.org/10.1002/jobm.201400175
  35. Mols M, Abee T. 2011. Bacillus cereus responses to acid stress. Environ. Microbiol. 13: 2835-2843. https://doi.org/10.1111/j.1462-2920.2011.02490.x
  36. Stanley NR, Lazazzera BA. 2004. Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol. 52: 917-924. https://doi.org/10.1111/j.1365-2958.2004.04036.x
  37. Trcek J, Mira NP, Jarboe LR. 2015. Adaptation and tolerance of bacteria against acetic acid. Appl. Microbiol. Biotechnol. 99: 6215-6229. https://doi.org/10.1007/s00253-015-6762-3
  38. Wu X, Zhang L, Jin X, Fang Y, Zhang K, Qi L, et al. 2016. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Biotechnol. Lett. 38: 1097-1106. https://doi.org/10.1007/s10529-016-2085-4
  39. Trcek J, Jernejc K, Matsushita K. 2007. The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 11: 627-635. https://doi.org/10.1007/s00792-007-0077-y
  40. Tallawi M, Opitz M, Lieleg O. 2017. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater. Sci. 5: 887-900. https://doi.org/10.1039/C6BM00832A
  41. Liu L, Wu R, Zhang J, Shang N, Li P. 2017. D-Ribose interferes with quorum sensing to inhibit biofilm formation of Lactobacillus paraplantarum L-ZS9. Front. Microbiol. 8: 1860. https://doi.org/10.3389/fmicb.2017.01860
  42. Novick RP, Geisinger E. 2008. Quorum sensing in Staphylococci. Annu. Rev. Genet. 42: 541-564. https://doi.org/10.1146/annurev.genet.42.110807.091640
  43. Reck M, Tomasch J, Wagner-Dobler I. 2015. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet. 11: e1005353. https://doi.org/10.1371/journal.pgen.1005353
  44. Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183: 897-908. https://doi.org/10.1128/JB.183.3.897-908.2001
  45. Mashburn-Warren L, Morrison DA, Federle MJ. 2010. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol. Microbiol. 78: 589-606. https://doi.org/10.1111/j.1365-2958.2010.07361.x
  46. Cassone M, Gagne AL, Spruce LA, Seeholzer SH, Sebert ME. 2012. The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competencestimulating peptide. J. Biol. Chem. 287: 38449-38459. https://doi.org/10.1074/jbc.M112.391482
  47. Sebert ME, Patel KP, Plotnick M, Weiser JN. 2005. Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system. J. Bacteriol. 187: 3969-3979. https://doi.org/10.1128/JB.187.12.3969-3979.2005
  48. Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM. 2009. Peptide alarmone signalling triggers an autoactive bacteriocin necessary for genetic competence. Mol. Microbiol. 72: 905-917. https://doi.org/10.1111/j.1365-2958.2009.06693.x
  49. Monedero V, Revilla-Guarinos A, Zuniga M. 2017. Physiological role of two-component signal transduction systems in food-associated lactic acid bacteria. Adv. Appl. Microbiol. 99: 1-51. https://doi.org/10.1016/bs.aambs.2016.12.002
  50. Alcantara C, Bauerl C, Revilla-Guarinos A, Perez-Martinez G, Monedero V, Zuniga M. 2016. Peptide and amino acid metabolism is controlled by an OmpR-family response regulator in Lactobacillus casei. Mol. Microbiol. 100: 25-41. https://doi.org/10.1111/mmi.13299
  51. Yi H, Han X, Yang Y, Liu W, Liu H, Zhang Y, et al. 2013. Effect of exogenous factors on bacteriocin production from Lactobacillus paracasei J23 by using a resting cell system. Int. J. Mol. Sci. 14: 24355-24365. https://doi.org/10.3390/ijms141224355
  52. Dufour D, Cordova M, Cvitkovitch DG, Levesque CM. 2011. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J. Bacteriol. 193: 6552-6559. https://doi.org/10.1128/JB.05968-11
  53. Md Sidek NL, Halim M, Tan JS, Abbasiliasi S, Mustafa S, Ariff AB. 2018. Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. Biomed Res. Int. 2018: 5973484.
  54. Buch AD, Archana G, Naresh Kumar G. 2010. Broad-hostrange plasmid-mediated metabolic perturbations in Pseudomonas fluorescens 13525. Appl. Microbiol. Biotechnol. 88: 209-218. https://doi.org/10.1007/s00253-010-2717-x
  55. Wang B, Zhang H, Liang D, Hao P, Li Y, Qiao J. 2017. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44. J. Dairy. Sci. 100: 9532-9538. https://doi.org/10.3168/jds.2017-13101
  56. Tan SM, Lee SM, Dykes GA. 2015. Acetic acid induces pHindependent cellular energy depletion in Salmonella enterica. J. Dairy. Sci. 12: 183-189.
  57. Akasaka N, Astuti W, Ishii Y, Hidese R, Sakoda H, Fujiwara S. 2015. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration. J. Biosci. Bioeng. 119: 661-668. https://doi.org/10.1016/j.jbiosc.2014.11.003
  58. Berger M, Berger P, Denamur E, Mellmann A, Dobrindt U. 2018. Core elements of the vegetative replication control of the Inc1 plasmid pO104_90 of Escherichia coli O104:H4 also regulate its transfer frequency. Int. J. Med. Microbiol. 308: 962-968. https://doi.org/10.1016/j.ijmm.2018.07.003
  59. Miljkovic M, Lozo J, Mirkovic N, O'Connor PM, Malesevic M, Jovcic B, et al. 2018. Functional characterization of the Lactolisterin BU gene cluster of Lactococcus lactis subsp. lactis BGBU1-4. Front. Microbiol. 9: 2774. https://doi.org/10.3389/fmicb.2018.02774
  60. Perlinska A, Grynberg M. 2014. Bacillus anthracis pXO1 plasmid encodes a putative membrane-bound bacteriocin. PeerJ 2: e679. https://doi.org/10.7717/peerj.679
  61. Malik A, Sumayyah S, Yeh CW, Heng NC. 2016. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol. Lett. 363 pii: fnw059. https://doi.org/10.1093/femsle/fnw059
  62. Trcek J. 2014. Plasmid analysis of high acetic acid-resistant bacterial strains by two-dimensional agarose gel electrophoresis and insights into the phenotype of plasmid pJK2-1. Ann. Microbiol. 65: 1287-1292. https://doi.org/10.1007/s13213-014-0966-0
  63. Khan R, Rukke HV, Ricomini Filho AP, Fimland G, Arntzen MO, Thiede B, et al. 2012. Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J. Bacteriol. 194: 3781-3788. https://doi.org/10.1128/JB.00624-12
  64. Kochan TJ, Dawid S. 2013. The HtrA protease of Streptococcus pneumoniae controls density-dependent stimulation of the bacteriocin blp locus via disruption of pheromone secretion. J. Bacteriol. 195: 1561-1572. https://doi.org/10.1128/JB.01964-12

Cited by

  1. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? vol.9, pp.1, 2019, https://doi.org/10.3390/antibiotics9010032
  2. Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins vol.9, pp.9, 2020, https://doi.org/10.3390/antibiotics9090553
  3. Antibiotic activity and resistance of lactic acid bacteria and other antagonistic bacteriocin-producing microorganisms vol.8, pp.2, 2019, https://doi.org/10.21603/2308-4057-2020-2-377-384
  4. Biomanufacturing process for the production of bacteriocins from Bacillaceae family vol.7, 2019, https://doi.org/10.1186/s40643-020-0295-z
  5. Determination of minimum inhibitory concentrations of lactic acid bacteria and other antagonist microorganisms vol.291, 2021, https://doi.org/10.1051/e3sconf/202129102006
  6. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling vol.27, pp.1, 2019, https://doi.org/10.1186/s10020-021-00295-2
  7. Transcriptomic analysis of bacteriocin synthesis and stress response in Lactobacillus paracasei HD1.7 under acetic acid stress vol.154, 2022, https://doi.org/10.1016/j.lwt.2021.112897