References
- Lopez-Cuellar MdR, Rodriguez-Hernandez A-I, Chavarria-Hernandez N. 2016. LAB bacteriocin applications in the last decade. Biotechnol. Biotechnol. Equip. 30: 1039-1050. https://doi.org/10.1080/13102818.2016.1232605
- Kaktcham PM, Temgoua JB, Ngoufack Zambou F, Diaz-Ruiz G, Wacher C, Perez-Chabela ML. 2017. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria. World. J. Microbiol. Biotechnol. 33: 32. https://doi.org/10.1007/s11274-016-2197-y
- Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, et al. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 4173-4179. https://doi.org/10.1128/JB.182.15.4173-4179.2000
- Jia FF, Zheng HQ, Sun SR, Pang XH, Liang Y, Shang JC, et al. 2018. Role of luxs in stress tolerance and adhesion ability in Lactobacillus plantarum KLDS1.0391. Biomed. Res. Int. 2018: 4506829.
- Dobson A, Cotter PD, Ross RP, Hill C. 2012. Bacteriocin production: a probiotic trait? Appl. Environ. Microbiol. 78: 1-6. https://doi.org/10.1128/AEM.05576-11
- Blanchard AE, Liao C, Lu T. 2016. An ecological understanding of quorum sensing-controlled bacteriocin synthesis. Cell. Mol. Bioeng. 9: 443-454. https://doi.org/10.1007/s12195-016-0447-6
- Maldonado-Barragan A, Caballero-Guerrero B, Lucena-Padros H, Ruiz-Barba JL. 2013. Induction of bacteriocin production by coculture is widespread among plantaricinproducing Lactobacillus plantarum strains with different regulatory operons. Food Microbiol. 33: 40-47. https://doi.org/10.1016/j.fm.2012.08.009
- Ge J, Fang B, Wang Y, Song G, Ping W. 2014. Bacillus subtilis enhances production of Paracin1. 7, a bacteriocin produced by Lactobacillus paracasei HD1-7, isolated from Chinese fermented cabbage. Ann. Microbiol. 64: 1735-1743. https://doi.org/10.1007/s13213-014-0817-z
- Moreno-Gamez S, Sorg RA, Domenech A, Kjos M, Weissing FJ, van Doorn GS, et al. 2017. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat. Commun. 8: 854. https://doi.org/10.1038/s41467-017-00903-y
- Talagrand-Reboul E, Jumas-Bilak E, Lamy B. 2017. The social life of Aeromonas through biofilm and quorum sensing systems. Front. Microbiol. 8: 37.
- Paczkowski JE, Mukherjee S, McCready AR, Cong JP, Aquino CJ, Kim H, et al. 2017. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 292: 4064-4076. https://doi.org/10.1074/jbc.M116.770552
- Johnson EM, Jung DY, Jin DY, Jayabalan DR, Yang DSH, Suh JW. 2018. Bacteriocins as food preservatives: challenges and emerging horizons. Crit. Rev. Food. Sci. 58: 2743-2767. https://doi.org/10.1080/10408398.2017.1340870
- Abbasiliasi S, Ramanan RN, Ibrahim TAT, Mustafa S, Mohamad R, Daud HHM, et al. 2014. Effect of medium composition and culture condition on the production of bacteriocin-like inhibitory substances (BLIS) by Lactobacillus paracaseiLA07, a strain isolated from Budu. Biotechnol. Biotechnol. Equip. 25: 2652-2657. https://doi.org/10.5504/BBEQ.2011.0101
- De Kwaadsteniet M, Todorov SD, Knoetze H, Dicks LM. 2005. Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Grampositive and Gram-negative bacteria. Int. J. Food Microbiol. 105: 433-444. https://doi.org/10.1016/j.ijfoodmicro.2005.03.021
- Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, et al. 2018. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB. Express. 8: 10. https://doi.org/10.1186/s13568-018-0536-0
- Agaliya PJ, Jeevaratnam K. 2013. Characterisation of the bacteriocins produced by two probiotic Lactobacillus isolates from idli batter. Ann. Microbiol. 63: 1525-1535. https://doi.org/10.1007/s13213-013-0616-y
- Embaby AM, Heshmat Y, Hussein A, Marey HS. 2014. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain. Scientific World Journal 2014: 1-16.
- Lozo J, Vukasinovic M, Strahinic I, Topisirovic L. 2004. Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei subsp. paracasei BGBUK2-16. J. Food Prot. 67: 2727-2734. https://doi.org/10.4315/0362-028X-67.12.2727
- Nilsson L, Nielsen MK, Ng Y, Gram L. 2002. Role of acetate in production of an autoinducible class iia bacteriocin in Carnobacterium piscicola A9b. Appl. Environ. Microbiol. 68: 2251-2260. https://doi.org/10.1128/AEM.68.5.2251-2260.2002
- Cabo ML, Braber AF, Koenraad PM. 2002. Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor is due to acetic acid in the medium. J. Food Prot. 65: 1309-1316. https://doi.org/10.4315/0362-028X-65.8.1309
- Casal M, Paiva S, Queiros O, Soares-Silva I. 2008. Transport of carboxylic acids in yeasts. FEMS Microbiol. Rev. 32: 974-994. https://doi.org/10.1111/j.1574-6976.2008.00128.x
- Mols M, Abee T. 2008. Role of ureolytic activity in Bacillus cereus nitrogen metabolism and acid survival. Appl. Environ. Microbiol. 74: 2370-2378. https://doi.org/10.1128/AEM.02737-07
- Hosein AM, Breidt F, Jr., Smith CE. 2011. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7. Appl. Environ. Microbiol. 77: 889-895. https://doi.org/10.1128/AEM.02136-10
- Xiao KK, Guo CH, Zhou Y, Maspolim Y, Wang JY, Ng WJ. 2013. Acetic acid inhibition on methanogens in a two-phase anaerobic process. Biochem. Eng. J. 75: 1-7. https://doi.org/10.1016/j.bej.2013.03.011
- Lund P, Tramonti A, De Biase D. 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38: 1091-1125. https://doi.org/10.1111/1574-6976.12076
- Woo JM, Kim JW, Song JW, Blank LM, Park JB. 2016. Activation of the glutamic acid-dependent acid resistance system in Escherichia coli BL21(DE3) leads to increase of the fatty acid biotransformation activity. PLoS One 11: e0163265. https://doi.org/10.1371/journal.pone.0163265
- Gao C, Zheng Y. 2018. Control of acetic acid metabolism of recombinant Yarrowia lipolytica for efficient succinic acid production. Chin. J. Biotechnol. 34: 389-395.
- Adachi K, Ohtani K, Kawano M, Singh RP, Yousuf B, Sonomoto K, et al. 2018. Metabolic dependent and independent pH-drop shuts down VirSR quorum sensing in Clostridium perfringens. J. Biosci. Bioeng. 125: 525-531. https://doi.org/10.1016/j.jbiosc.2017.12.019
- Fernandez I, Sycz G, Goldbaum FA, Carrica MDC. 2018. Acidic pH triggers the phosphorylation of the response regulator NtrX in alphaproteobacteria. PLoS One 13: e0194486. https://doi.org/10.1371/journal.pone.0194486
- Wang J, Hao C, Huang H, Tang W, Zhang J, Wang C. 2018. Acetic acid production by the newly isolated Pseudomonas sp. CSJ-3. Braz. J. Chem. Eng. 35: 1-9. https://doi.org/10.1590/0104-6632.20180351s20160500
- Peeters SH, de Jonge MI. 2018. For the greater good: Programmed cell death in bacterial communities. Microbiol. Res. 207: 161-169. https://doi.org/10.1016/j.micres.2017.11.016
- Ding J, Holzwarth G, Penner MH, Patton-Vogt J, Bakalinsky AT. 2015. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS. Microbiol. Lett. 362: 1-7.
- Lyon GJ, Novick RP. 2004. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25: 1389-1403. https://doi.org/10.1016/j.peptides.2003.11.026
- Mhatre E, Monterrosa RG, Kovacs AT. 2014. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. J. Basic. Microbiol. 54: 616-632. https://doi.org/10.1002/jobm.201400175
- Mols M, Abee T. 2011. Bacillus cereus responses to acid stress. Environ. Microbiol. 13: 2835-2843. https://doi.org/10.1111/j.1462-2920.2011.02490.x
- Stanley NR, Lazazzera BA. 2004. Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol. 52: 917-924. https://doi.org/10.1111/j.1365-2958.2004.04036.x
- Trcek J, Mira NP, Jarboe LR. 2015. Adaptation and tolerance of bacteria against acetic acid. Appl. Microbiol. Biotechnol. 99: 6215-6229. https://doi.org/10.1007/s00253-015-6762-3
- Wu X, Zhang L, Jin X, Fang Y, Zhang K, Qi L, et al. 2016. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Biotechnol. Lett. 38: 1097-1106. https://doi.org/10.1007/s10529-016-2085-4
- Trcek J, Jernejc K, Matsushita K. 2007. The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 11: 627-635. https://doi.org/10.1007/s00792-007-0077-y
- Tallawi M, Opitz M, Lieleg O. 2017. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater. Sci. 5: 887-900. https://doi.org/10.1039/C6BM00832A
- Liu L, Wu R, Zhang J, Shang N, Li P. 2017. D-Ribose interferes with quorum sensing to inhibit biofilm formation of Lactobacillus paraplantarum L-ZS9. Front. Microbiol. 8: 1860. https://doi.org/10.3389/fmicb.2017.01860
- Novick RP, Geisinger E. 2008. Quorum sensing in Staphylococci. Annu. Rev. Genet. 42: 541-564. https://doi.org/10.1146/annurev.genet.42.110807.091640
- Reck M, Tomasch J, Wagner-Dobler I. 2015. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet. 11: e1005353. https://doi.org/10.1371/journal.pgen.1005353
- Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183: 897-908. https://doi.org/10.1128/JB.183.3.897-908.2001
- Mashburn-Warren L, Morrison DA, Federle MJ. 2010. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol. Microbiol. 78: 589-606. https://doi.org/10.1111/j.1365-2958.2010.07361.x
- Cassone M, Gagne AL, Spruce LA, Seeholzer SH, Sebert ME. 2012. The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competencestimulating peptide. J. Biol. Chem. 287: 38449-38459. https://doi.org/10.1074/jbc.M112.391482
- Sebert ME, Patel KP, Plotnick M, Weiser JN. 2005. Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system. J. Bacteriol. 187: 3969-3979. https://doi.org/10.1128/JB.187.12.3969-3979.2005
- Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM. 2009. Peptide alarmone signalling triggers an autoactive bacteriocin necessary for genetic competence. Mol. Microbiol. 72: 905-917. https://doi.org/10.1111/j.1365-2958.2009.06693.x
- Monedero V, Revilla-Guarinos A, Zuniga M. 2017. Physiological role of two-component signal transduction systems in food-associated lactic acid bacteria. Adv. Appl. Microbiol. 99: 1-51. https://doi.org/10.1016/bs.aambs.2016.12.002
- Alcantara C, Bauerl C, Revilla-Guarinos A, Perez-Martinez G, Monedero V, Zuniga M. 2016. Peptide and amino acid metabolism is controlled by an OmpR-family response regulator in Lactobacillus casei. Mol. Microbiol. 100: 25-41. https://doi.org/10.1111/mmi.13299
- Yi H, Han X, Yang Y, Liu W, Liu H, Zhang Y, et al. 2013. Effect of exogenous factors on bacteriocin production from Lactobacillus paracasei J23 by using a resting cell system. Int. J. Mol. Sci. 14: 24355-24365. https://doi.org/10.3390/ijms141224355
- Dufour D, Cordova M, Cvitkovitch DG, Levesque CM. 2011. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J. Bacteriol. 193: 6552-6559. https://doi.org/10.1128/JB.05968-11
- Md Sidek NL, Halim M, Tan JS, Abbasiliasi S, Mustafa S, Ariff AB. 2018. Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. Biomed Res. Int. 2018: 5973484.
- Buch AD, Archana G, Naresh Kumar G. 2010. Broad-hostrange plasmid-mediated metabolic perturbations in Pseudomonas fluorescens 13525. Appl. Microbiol. Biotechnol. 88: 209-218. https://doi.org/10.1007/s00253-010-2717-x
- Wang B, Zhang H, Liang D, Hao P, Li Y, Qiao J. 2017. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44. J. Dairy. Sci. 100: 9532-9538. https://doi.org/10.3168/jds.2017-13101
- Tan SM, Lee SM, Dykes GA. 2015. Acetic acid induces pHindependent cellular energy depletion in Salmonella enterica. J. Dairy. Sci. 12: 183-189.
- Akasaka N, Astuti W, Ishii Y, Hidese R, Sakoda H, Fujiwara S. 2015. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration. J. Biosci. Bioeng. 119: 661-668. https://doi.org/10.1016/j.jbiosc.2014.11.003
- Berger M, Berger P, Denamur E, Mellmann A, Dobrindt U. 2018. Core elements of the vegetative replication control of the Inc1 plasmid pO104_90 of Escherichia coli O104:H4 also regulate its transfer frequency. Int. J. Med. Microbiol. 308: 962-968. https://doi.org/10.1016/j.ijmm.2018.07.003
- Miljkovic M, Lozo J, Mirkovic N, O'Connor PM, Malesevic M, Jovcic B, et al. 2018. Functional characterization of the Lactolisterin BU gene cluster of Lactococcus lactis subsp. lactis BGBU1-4. Front. Microbiol. 9: 2774. https://doi.org/10.3389/fmicb.2018.02774
- Perlinska A, Grynberg M. 2014. Bacillus anthracis pXO1 plasmid encodes a putative membrane-bound bacteriocin. PeerJ 2: e679. https://doi.org/10.7717/peerj.679
- Malik A, Sumayyah S, Yeh CW, Heng NC. 2016. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol. Lett. 363 pii: fnw059. https://doi.org/10.1093/femsle/fnw059
- Trcek J. 2014. Plasmid analysis of high acetic acid-resistant bacterial strains by two-dimensional agarose gel electrophoresis and insights into the phenotype of plasmid pJK2-1. Ann. Microbiol. 65: 1287-1292. https://doi.org/10.1007/s13213-014-0966-0
- Khan R, Rukke HV, Ricomini Filho AP, Fimland G, Arntzen MO, Thiede B, et al. 2012. Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J. Bacteriol. 194: 3781-3788. https://doi.org/10.1128/JB.00624-12
- Kochan TJ, Dawid S. 2013. The HtrA protease of Streptococcus pneumoniae controls density-dependent stimulation of the bacteriocin blp locus via disruption of pheromone secretion. J. Bacteriol. 195: 1561-1572. https://doi.org/10.1128/JB.01964-12
Cited by
- Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? vol.9, pp.1, 2019, https://doi.org/10.3390/antibiotics9010032
- Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins vol.9, pp.9, 2020, https://doi.org/10.3390/antibiotics9090553
- Antibiotic activity and resistance of lactic acid bacteria and other antagonistic bacteriocin-producing microorganisms vol.8, pp.2, 2019, https://doi.org/10.21603/2308-4057-2020-2-377-384
- Biomanufacturing process for the production of bacteriocins from Bacillaceae family vol.7, 2019, https://doi.org/10.1186/s40643-020-0295-z
- Determination of minimum inhibitory concentrations of lactic acid bacteria and other antagonist microorganisms vol.291, 2021, https://doi.org/10.1051/e3sconf/202129102006
- The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling vol.27, pp.1, 2019, https://doi.org/10.1186/s10020-021-00295-2
- Transcriptomic analysis of bacteriocin synthesis and stress response in Lactobacillus paracasei HD1.7 under acetic acid stress vol.154, 2022, https://doi.org/10.1016/j.lwt.2021.112897