DOI QR코드

DOI QR Code

Development of a safety accident prevention system for construction equipment utilizing IoT and RTLS technology

사물인터넷과 실시간 위치추적 기술을 활용한 건설 장비의 안전 사고 방지 시스템 개발

  • Ryu, Han Guk (Department of Architecture, Sahmyook University) ;
  • Kim, Tae Wan (Division of Architecture & Urban Design, Incheon National University)
  • Received : 2019.07.19
  • Accepted : 2019.09.20
  • Published : 2019.09.28

Abstract

Identifying potential accidents at construction sites is a major concern for the construction industry, and, according to the Korea Occupational Safety and Health Agency, the death rate of safety accidents caused by construction equipment is particularly high at 19.8% as of 2016. Although Internet of Things (IoT) has not been applied widely in construction sites, it can build an operating system that feeds accurate and useful information to construction accident management for identifying potential accidents. In this context, this study proposes an IoT- and RTLS-based construction equipment safety accident prevention system, which can be useful for preventing and managing safety accidents caused by construction equipment. Future deployment of such system would contribute not only to the safety of workers but also to efficient equipment and manpower operation.

건설 현장의 잠재적 사고 파악은 건설업계의 주요 관심사이며 사고 위험을 줄이기 위한 사전 안전대책이 필요하다. 한국산업안전공단에 따르면 특히, 장비로 인한 안전사고의 사망 비율이 2016년 기준 19.8%로 매우 높은 부분을 차지하고 있다. 4차산업에서 사물인터넷(IoT)은 스마트한 새로운 제조 환경을 제공하고 있다. 그러나 건설 현장에서는 IoT가 광범위하게 적용되지 못하고 있는 실정이다. IoT는 건설사고 관리에 더 정확하고 유용한 정보를 전달하는 운영체계의 구축이 가능하다. 이에 본 연구는 건설 장비로 인한 안전사고를 예방하고 관리할 수 있는 IoT 기반 건설 장비 안전 사고 예방 시스템을 제안한다. 향후 본 시스템의 개선을 통하여 작업자의 안전뿐만 아니라 효율적인 장비와 인력 운용에도 기여할 것으로 판단된다.

Keywords

References

  1. J. H. Jo. (2012). A Study on the Causes Analysis and Preventive Measures by Disaster Types in Construction Fields. Journal of the Korea safety management & science, 14(1), 7-13. https://doi.org/10.12812/ksms.2012.14.1.007
  2. PROXIPI. (2019). WELL INTEGRATED PROXIPI WITH THE EVALUATION PILOT PROJECT. PROXIPI [Online]. https://www.proxipi.com/well-integrated-proxipi-with-the-evaluation-pilot-project/?lang=en
  3. Body Guard. (2019). Providing safety at work around moving vehicles. Body Guard [Online]. http://www.bodyguardsafety.com.au/
  4. Breezemount Electrical & Hydraulics Ltd. (2019). Site Zone Proximity Warning System. Breezemount. [Online]. http://www.breezemount.net/site_zone_proximity_warning_system
  5. H. Ishii, F. Harada, H. Takada & H. Shimakawa.(2009). Assured Evacuation Guide with Mobile Terminal Communication and RFID System under Lack of Power Supply. Ieej Transactions on Electronics, Information and Systems. 129. 366-375. DOI : 10.1541/ieejeiss.129.366
  6. G. Xu, M. Li, C. Chen & Y. Wei. (2018). Cloud asset-enabled integrated IoT platform for lean prefabricated construction. Automation in Construction, 93, 123-134. https://doi.org/10.1016/j.autcon.2018.05.012
  7. J. Louis & P. S. Dunston.(2018). Integrating IoT into operational workflows for real-time and automated decision-making in repetitive construction operations. Automation in Construction, 94, 317-327. DOI : 10.1016/j.autcon.2018.07.005
  8. S. R. Moon & J. H. Cho. (2019). Study on IoT-based Map Inside the Building and Fire Perception System. Journal of Digital Convergence, 17(1), 85-90. http://www.earticle.net/Article/A346592 https://doi.org/10.14400/JDC.2019.17.1.085
  9. Y. S. Jeong. (2016). An Efficient IoT Healthcare Service Management Model of Location Tracking Sensor. Journal of Digital Convergence, 14(3), 261-267. DOI : 10.14400/JDC.2016.14.3.261
  10. S. H. Lee, D. H. Shim & D. W. Lee. (2016). Actual Cases of Internet of Thing on Smart City Industry. Journal of Convergence for Information Technology, 6(4), 65-70. DOI : 10.22156/CS4SMB.2016.6.4.065
  11. M. S. Kwon, U. J. Gim, J. J. Lee & O. Jo. (2018). IoT-based Water Tank Management System for Real-time Monitoring and Controling. Journal of Convergence for Information Technology, 8(6), 217-223. DOI : 10.22156/CS4SMB.2018.8.6.217
  12. M. Memarzadeh, A. Heydarian, M. Golparvar-Fard & J. Niebles. (2012). Real-time and automated recognition and 2D tracking of Construction workers and equipment from Site video streams. In Int. Workshop on Computing in Civil Engineering. DOI : 10.1061/9780784412343.0054
  13. E. Konstantinou & I. Brilakis. (2018). Matching construction workers across views for automated 3D vision tracking on-site. Journal of Construction Engineering and Management, 144(7), 04018061. DOI : 10.1061/(ASCE)CO.1943-7862.0001508
  14. C. Lee, K. Kim, J. Kim & S. Choi, S. (2017). Construction site safety management system using zigbee communication. Journal of the Institute of Electronics and Information Engineers, 54(3), 39-51. DOI : 10.5573/ieie.2017.54.3.39
  15. H. S. Lee, K. P. Lee, M. Park, Y. Baek & S. H. Le. e(2012). RFID-Based Real-Time Locating System for Construction Safety Management. Journal of Computing in Civil Engineering. 26(3), 366-377. DOI : 10.1061/(ASCE)CP.1943-5487.0000144
  16. T. Cheng & J. Teizer. (2013). Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications, Automation in Construction, 34, 3-15. DOI : 10.1016/j.autcon.2012.10.017
  17. D. B. Korman & A. Zulps. (2017). Enhancing Construction Safety Using Wearable Technology. In ASSE Professional Development Conference and Exposition. American Society of Safety Engineers.