DOI QR코드

DOI QR Code

Analysis on Ignition Delay Characteristics of Bio Aviation Fuels Manufactured by HEFA Process

HEFA 공정으로 제조된 바이오항공유의 점화지연특성 분석

  • Kang, Saetbyeol (The 4th R&D Institute 5th Directorate Agency for Defense Development)
  • 강샛별 (국방과학연구소 제4기술연구본부 5부)
  • Received : 2019.06.19
  • Accepted : 2019.07.11
  • Published : 2019.10.01

Abstract

In this study, ignition delay characteristics of various bio aviation fuels (Bio-ADD, Bio-6308, Bio-7720) produced by HEFA process using different raw materials were compared and analyzed. In order to confirm the feasibility of applying bio aviation fuel to actual system, ignition delay characteristics of petroleum-based aviation fuel (Jet A-1) and blended aviation fuel (50:50, v:v) also analyzed. Ignition delay time of each aviation fuel was measured by using CRU, surface tension measurement and GC/MS and GC/FID analysis were performed to interpret the results. As a result, ignition delay time of Jet A-1 was the longest at all temperature because it contains aromatic compounds about 22.8%. The aromatic compounds can produce benzyl radical which is thermally stable and has low reactivity with oxygen during decomposition process. In the case of bio aviation fuels, ignition delay times were measured similarly because the ratio of n-paraffin/iso-paraffin constituting each aviation fuel is similar (about 0.12) and the composition ratio of cycloparaffin also has no difference. In addition, ignition delay times of blended aviation fuels (50:50, v:v) were measured close to the mean value those of each fuel so it was confirmed that it can be applied without any changing or improving of existing system.

본 연구에서는 서로 다른 원료를 이용하여 HEFA 공정을 통해 제조한 국내외 바이오항공유(Bio-ADD, Bio-6308, Bio-7720)의 점화지연특성을 비교 및 분석하였으며, 이러한 바이오항공유의 실제 시스템에의 적용 가능성을 확인하기 위하여 기존에 사용되고 있는 석유계항공유(Jet A-1) 및 바이오항공유와 석유계항공유를 일정한 비율(50:50, v:v)로 혼합한 연료의 점화지연특성에 대해서도 분석하였다. 각 항공유의 점화지연시간은 CRU 장비를 사용하여 측정하였으며, 결과 해석을 위해 표면장력 측정, GC/MS 및 GC/FID 분석을 수행하였다. 그 결과, 모든 온도 조건에서 Jet A-1의 점화지연시간이 가장 길게 측정되었는데, 이는 aromatic compounds가 약 22.8% 존재하여 분해 과정에서 열적으로 안정하고 주변 산소와도 반응성이 낮은 benzyl radical이 생성되기 때문인 것으로 판단된다. 바이오항공유의 점화지연시간은 모두 비슷하게 측정되었는데, 이는 각 항공유를 구성하는 n-paraffin과 iso-paraffin의 비율(n-/iso-)이 약 0.12로 서로 비슷한 값을 가지며, cycloparaffin의 구성 비율도 약 3% 미만으로 크게 차이가 없기 때문인 것으로 해석된다. 또한, 국내외에서 개발된 바이오항공유(Bio-ADD, Bio-6308)를 석유계항공유와 50:50(v:v)으로 혼합한 연료의 점화지연시간은 혼합하지 않은 Jet A-1과 각 바이오항공유가 갖는 점화지연시간의 사잇값으로 측정되어, 기존에 사용 중인 시스템을 변경하거나 개선하지 않아도 적용이 가능함을 확인하였다.

Keywords

References

  1. Beginner's Guide to Aviation Biofuels, 2nd ed., Air transport action group, Switzerland(2011).
  2. Susan, V. D., Jack, S., Francisco, B., Deger, S., Alessandra S. and Amr, S., "Biofuels for Aviation Technology Brief," International Renewable Energy Agency, 2-4(2017).
  3. "ICAO Environmental Report 2016: Aviation and Climate Change," International Civil Aviation Organization, 153-178(2016).
  4. Eric, C. W., Jakob, L. P., Christian, E., Rasmus, B., Nicolaj, S., Camilla, T., Toke, L., Rasmus, S. H., Johannes, M. E., Marie, K. R., Jonas, H., Ronja, B. E., Judit, S., Berta, M. G., Jens, J. K. H., Paivi, L., Tiina, P. and Marika, B., "Sustainable Jet Fuel for Aviation - Nordic Perpectives on the use of Advanced Sustainable Jet Fuel for Aviation," Report NO. 538, Nordic Council of Ministers(2016).
  5. "Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons," American Society for Testing and Materials(2016).
  6. "IATA Guidance Material for Biojet Fuel Management," International Air Transport Association, 4-5(2012).
  7. John, B. H., Internal Combustion Engine Fundamentals, McGraw-Hill Book Company, New York, 539-540(1988).
  8. Petrukhin, N. V., Grishin, N. N. and Sergeev, S. M., "Ignition Delay Time - an Important Fuel Property," Chemistry and Technology of Fuels and Oils, 51(6), 581-584(2016). https://doi.org/10.1007/s10553-016-0642-0
  9. Zheng, Z., Badawy, T., Henein, N. and Sattler, E., "Investigation of Physical and Chemical Delay Periods of Different Fuels in the Ignition Quality Tester," J. Eng. Gas Turbines Power, 135(6), 061501(2013). https://doi.org/10.1115/1.4023607
  10. Bogin, G. E. J., De Filippo, A., Chen, J. Y., Chin, G., Luecke, J., Ratcliff, M. A., Zigler, B. T. and Dean, A. M., "Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester(IQT)," Energy & Fuels, 25(12), 5562-5572 (2011). https://doi.org/10.1021/ef201079g
  11. Subith, S. V., David, F. D. and Ronald, K. H., "Jet Fuel Ignition Delay Times: Shock Tube Experiments over Wide Conditions and Surrogate Model Predictions," Combustion and Flame, 152(1-2), 125-143(2008). https://doi.org/10.1016/j.combustflame.2007.06.019
  12. Kang, S. B. and Jeong, B. H., "Analysis on Ignition Delay Time according to the Ratio of Bio Aviation Fuel in Jet A-1 Mixture," Journal of the Korean Society of Propulsion Engineers, 23(2), 13-20(2019). https://doi.org/10.6108/KSPE.2019.23.2.013
  13. "Determination of Ignition and Combustion Characteristics of Residual Fuels - Constant Volume Combustion Chamber Method," Energy Institute(2006).
  14. http://www.spray-nozzle.co.uk/resources/engineering-resources/guide-to-spray-properties/4-droplet-size.
  15. Gohtani, S., Sirendi, M., Yamamoto, N., Kajikawa, K. and Yamano, Y., "Effect of Droplet Size on Oxidation of Docosahexaenoic Acid in Emulsion System," Journal of Dispersion Science and Technology, 20(5), 1319-1325(1999). https://doi.org/10.1080/01932699908943855
  16. Pilling, M. J., Low-Temperature Combustion and Autoignition, 35th ed., Elsevier, Netherlands, 56-66(1997).
  17. Boot, M. D., Tian, M., Hensen, E. J. M. and Mani, S. S., "Impact of Fuel Molecular Structure on Auto-Ignition Behavior-Design Rules for Future High Performance Gasolines," Progress in Energy and Combustion Science, 60, 1-25(2017). https://doi.org/10.1016/j.pecs.2016.12.001
  18. Simmie, J. M., "Detailed Chemical Kinetic Models for the Combustion of Hydrocarbon Fuels," Progress in Energy and Combustion Science, 29(6), 599-634(2003). https://doi.org/10.1016/S0360-1285(03)00060-1
  19. Emdee, J. L., Brezinsky, K. and Glassman, I., "A Kinetic Model for the Oxidation of Toluene near 1200 K," J. Phys. Chem., 96(5), 2151-2161(1992). https://doi.org/10.1021/j100184a025
  20. Rakesh, K. M., Characteristics and Control of Low Temperature Combustion Engines: Employing Gasoline, Ethanol and Methanol, Springer International Publishing, India, 139(2018).
  21. Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, New York, 21-35(2007).
  22. Buda, F., Heyberger, B., Fournet, R., Glaude, P. A., Warth, V. and Battin, L. F., "Modeling of the Gas-Phase Oxidation of Cyclohexane," Energy & Fuels, 20(4), 1450-1459(2006). https://doi.org/10.1021/ef060090e

Cited by

  1. Operation of bio-aviation fuel manufacturing facility via hydroprocessed esters and fatty acids process and optimization of fuel property for turbine engine test vol.38, pp.6, 2019, https://doi.org/10.1007/s11814-021-0770-z
  2. Effect of Hydrogen Donor Addition on Thermal Decomposition of Bio-jet Fuel vol.60, pp.30, 2021, https://doi.org/10.1021/acs.iecr.1c01574