DOI QR코드

DOI QR Code

Study on the Fuel Decomposition Characteristics and Coke Formation by Type of Endothermic Fuel and Method of Catalyst Molding

흡열연료 종류와 촉매 성형 방법에 따른 분해특성과 코크 생성에 관한 연구

  • Lee, Tae Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang, Saetbyeol (Agency for Defense Development) ;
  • Kim, Sung Hyun (Department of Chemical and Biological Engineering, Korea University)
  • Received : 2019.05.20
  • Accepted : 2019.06.23
  • Published : 2019.10.01

Abstract

This study was carried out to investigate fuel decomposition characteristics and coke formation according to types of endothermic fuels and methods of catalyst molding. Methylcyclohexane (MCH), n-dodecane, and exo-tetrahydrodipentadiene (exo-THDCP) were used as the endothermic fuels. As a catalyst, USY720 supported with platinum was used. It was manufactured by only using pressure to disk-type, or pelletized with a binder and a silica solution. The characteristics of the catalysts according to the molding method were analyzed by X-ray diffraction analysis, scanning electron microscopy, nitrogen adsorption-desorption isotherm, and ammonia temperature programmed desorption analysis. The reaction was carried out under conditions of high temperature and high pressure ($500^{\circ}C$, 50 bar) in which the fuel could exist in a supercritical state. The product was analyzed by gas chromatograph/mass spectrometer and the coke produced by the catalyst was analyzed by thermogravimetric analyzer. After the reaction, the composition of the products varied greatly depending on the structure of the fuel. In addition, the crystallinity and surface properties of the catalysts were not changed by the method of catalyst molding, but the changes of the acid sites and the pore characteristics were observed, which resulted in changes in the amount and composition of products and coke.

본 연구에서는 흡열연료의 종류와 촉매의 성형 방법에 따른 연료의 분해특성 및 코크 생성에 대하여 분석하였다. 실험에 사용된 연료는 methylcyclohexane (MCH), n-dodecane 그리고 exo-tetrahydrodipentadiene (exo-THDCP)이며, 백금을 담지한 USY720에 압력만을 가하여 제조한 disk 형태, binder와 silica solution을 혼합하여 제조한 pellet 형태의 제올라이트를 촉매로 사용하였다. 성형 방법에 따른 촉매의 특성은 X-ray 회절분석법(XRD), 주사전자현미경(SEM), 질소흡탈착등온선 그리고 암모니아 승온탈착분석법을 통해 분석하였으며, 연료가 초임계 상태로 존재할 수 있는 고온고압의 조건($500^{\circ}C$, 50 bar)에서 반응을 진행시킨 후에 생성된 혼합물은 가스 크로마토그래프 질량분석계(GC-MS), 촉매에 생성된 코크는 열중량분석기를 사용하여 분석하였다. 이와 같은 분석을 수행한 결과, 반응 후 생성물의 조성은 연료를 구성하는 화합물의 구조에 따라 크게 차이를 보였다. 또한, 촉매의 성형 방법에 따른 결정성이나 표면 특성의 변화는 미미하였으나, 비교적 큰 변화를 보인 산점과 기공 특성이 생성물과 코크 생성량 및 조성의 변화에 영향을 주는 것으로 확인되었다.

Keywords

References

  1. Sobel, D. R. and Spadaccini, L. J., "Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion," ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, June, Houston(1997).
  2. Huang, H., Sobel, D. R. and Spadaccini, L. J., "Endothermic Heat-sink of Jet Fuels for Scramjet Cooling," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July, Indianapolis(2002).
  3. Granata, S., Faravelli, T. and Ranzi, E., "A Wide Range Kinetic Modeling Study of the Pyrolysis and Combustion of Naphthenes," Combust. Flame., 132(3), 533-544(2003). https://doi.org/10.1016/S0010-2180(02)00465-0
  4. Kim, J., Park, S. H., Chun, B., Jeong, B. H., Han, J. S. and Kim, S. H., "Improvement of the Heats of Reaction in Endothermic Reactions of Methylcyclohexane with Zeolites," Catal. Today, 185(1), 47-53(2012). https://doi.org/10.1016/j.cattod.2011.09.020
  5. Gerasimov, G. Y. and Losev, S. A., "Kinetic Models of Combustion of Kerosene and Its Components," J. Eng. Phys. Thermophys., 78(6), 1059-1070(2005). https://doi.org/10.1007/s10891-006-0035-z
  6. Edwards, T. and Maurice, L. Q., "Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels," J. Propul. Power, 17(2), 461-466(2001). https://doi.org/10.2514/2.5765
  7. Daniau, E., Bouchez, M., Bounaceur, R., Battin - Leclerc, F., Marquaire, P. M. and Fournet, R., "Contribution to Scramjet Active Cooling Analysis Using N-dodecane Decomposition Model," 12th AIAA International Space Planes Hypersonic Systems Technologies, December, Norfolk(2003).
  8. Edwards, T., "USAF Supercritical Hydrocarbon Fuels Interests," 31st Aerospace Sciences Meeting, January, Reno(1993).
  9. Qu, S., Liu, G., Meng, F., Wang, L. and Zhang, X., "Catalytic Cracking of Supercritical n-Dodecane over Wall-Coated HZSM-5 with Different Si/Al Ratios," Energy Fuels, 25(7), 2808-2814(2011). https://doi.org/10.1021/ef2004706
  10. Liu, G., Zhao, G., Meng, F., Qu, S., Wang, L. and Zhang, X., "Catalytic Cracking of Supercritical n-Dodecane over Wall-Coated HZSM-5 Zeolites with Micro- and Nanocrystal Sizes," Energy Fuels, 26(2), 1220-1229(2012). https://doi.org/10.1021/ef201467r
  11. Xing, Y., Fang, W., Xie, W., Guo, Y. and Lin, R., "Thermal Cracking of JP-10 under Pressure," Ind. Eng. Chem. Res., 47(24), 10034-10040(2008). https://doi.org/10.1021/ie801128f
  12. Deng, H. W., Zhang, C. B., Xu, G. Q., Tao, Z., Zhang, B. and Liu, G. Z., "Density Measurements of Endothermic Hydrocarbon Fuel at Sub- and Supercritical Conditions," J. Chem. Eng. Data, 56(6), 2980-2986(2011). https://doi.org/10.1021/je200258g
  13. Edwards, T., "Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels," Combust. Sci. Technol., 178(1-3), 307-334(2006). https://doi.org/10.1080/00102200500294346
  14. Green, R. J., Nakra, S. and Anderson, S. L., "Thermal Decomposition of JP-10 Studied by Micro-flowtube Pyrolysis-mass Spectrometry," Combust. Flame, 144(4), 662-674(2006). https://doi.org/10.1016/j.combustflame.2005.08.035
  15. Cooper, M. and Shepherd, J., "Experiments Studying Thermal Cracking, Catalytic Cracking, and Pre-Mixed Partial Oxidation of JP-10," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July, Huntsville(2003).
  16. Tian, Y., Qiu, Y., Hou, X., Wang, L. and Liu, G., "Catalytic Cracking of JP-10 over HZSM-5 Nanosheets," Energy Fuels, 31(11), 11987-11994(2017). https://doi.org/10.1021/acs.energyfuels.7b02397
  17. Kim, J., Hyeon, D. H., Park, S. H., Chun, B., Jeong, B. H., Han, J. S. and Kim, S. H., "Catalytic Endothermic Reactions of Exotetrahydrodicyclopentadiene with Zeolites and Improvement of Heat of Reactions," Catal. Today, 232(1), 63-68(2014). https://doi.org/10.1016/j.cattod.2013.10.045
  18. Guisnet, M., Magnoux, P., "Coking and Deactivation of Zeolites: Influence of the Pore Structure," Appl. Catal., 54(1), 1-27(1989). https://doi.org/10.1016/S0166-9834(00)82350-7
  19. Holland, B. T., Abrams, L. and Stein, A., "Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks," J. Am. Chem. Soc., 121(17), 4308-4309(1999). https://doi.org/10.1021/ja990425p
  20. Janssen, A. H., Schmidt, I., Jacobsen, C. J. H., Koster, A. J. and de Jong, K. P., "Exploratory Study of Mesopore Templating with Carbon During Zeolite Synthesis," Microporous Mesoporous Mater., 65(1), 59-75(2003). https://doi.org/10.1016/j.micromeso.2003.07.003
  21. Tao, Y., Kanoh, H. and Kaneko, K., "Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating," J. Phys. Chem. B, 107(40), 10974-10976(2003). https://doi.org/10.1021/jp0356822
  22. Ogura, M., Shinomiya, S., Tateno, J., Nara, Y., Kikuchi, E. and Matsukata, M., "Formation of Uniform Mesopores in ZSM-5 Zeolite through Treatment in Alkaline Solution," Chem. Lett., 29(8), 882-883(2000). https://doi.org/10.1246/cl.2000.882
  23. Lai, W. C. and Song, C., "Pyrolysis of Alkylcyclohexanes in or Near the Supercritical Phase. Product Distribution and Reaction Pathways," Fuel Process. Technol., 48(1), 1-27(2006). https://doi.org/10.1016/0378-3820(96)01030-2
  24. Song, C., Lai, W. C. and Schobert, H. H., "Hydrogen-Transferring Pyrolysis of Long-Chain Alkanes and Thermal Stability Improvement of Jet Fuels by Hydrogen Donors," Ind. Eng. Chem. Res., 33(3), 548-557(1994). https://doi.org/10.1021/ie00027a011
  25. Wohlwend, K., Maurice, L., Edwards, T., Striebich, R., Vangsness, M. and Hill, A., "Thermal Stability of Energetic Hydrocarbon Fuels in Fuel Systems for Combined Cycle Engines," 35th Joint Propulsion Conference and Exhibit, June, Los Angeles(1999).