DOI QR코드

DOI QR Code

Brief Review on Carbon Dioxide Capture and Utilization Technology

CCU 기술 국내외 연구동향

  • Kim, Hak Min (Korea Institute of Science and Technology, Environment, Health and Welfare Research Center) ;
  • Nah, In Wook (Korea Institute of Science and Technology, Environment, Health and Welfare Research Center)
  • 김학민 (한국과학기술연구원 환경복지연구센터) ;
  • 나인욱 (한국과학기술연구원 환경복지연구센터)
  • Received : 2019.02.28
  • Accepted : 2019.05.04
  • Published : 2019.10.01

Abstract

The policies and researches for the reduction of greenhouses gases have been performed according to"Paris Agreement". Because South Korea is the $6^{th}$ biggest greenhouses gas emitter in the world, the Korea government has prepared the strategies for the reduction of greenhouse gases. The development of CCUS (Carbon Capture Utilization and Storage) technology is necessary to reduce greenhouse gases. Therefore, the CCUS has been studied by many contries in the world. In this work, the trends of CCUS technologies R&D has been shortly investigated.

"파리 협정"을 통해 출범된 신기후체제에 따라 세계 각국에서 온실가스를 감축하기 위한 정책과 연구가 수행되고 있으며, 우리나라에서도 온실가스 감축을 위한 대책 마련이 시급한 실정이다. IEA 보고서에 따르면 에너지 부분의 $CO_2$ 배출량이 전체 배출량의 2/3에 해당하기 때문에 온실가스 감축을 위해서는 단기적으로는 화석연료 사용을 대체할 수 있는 신재생에너의 생산과 적용 기술 개발과 에너지효율개선 기술 도입이 최선이며, 장기적인 관점에서는 온실가스를 포집하고 활용하는 온실가스 포집 및 활용(CCUS, Carbon Capture Utilization and Storage) 기술 개발이 필수적이다. CCUS 기술은 온실가스를 직접적으로 감축시키는 기술로 활발하게 연구되고 있는 기술이다. 본 논문에서는 다양한 CCUS 기술 개요 및 연구 현황과 향후 전망에 대해서 살펴보았다.

Keywords

References

  1. Jensen, M. D., Peng, P., Snyder, A. C., Heebink, L. V., Botnen, L. S., Gorecki, C. D., Steadman, E. N. and Harju, J.A., "Methodology for Phased Development of a Hypothetical Pipeline Network for $CO_2$ Transport during Carbon Capture, Utilization, and Storage," Energy & Fuels, 27(8), 4175-4182(2013). https://doi.org/10.1021/ef302042p
  2. Bruhn, T., Naims, H. and Olfe-Krautlein, B., "Separating the Debate on $CO_2$ Utilisation from Carbon Capture and Storage," Envion. Sci. Policy, 60, 38-43(2016). https://doi.org/10.1016/j.envsci.2016.03.001
  3. Xie, H., Li, X., Fang, Z., Wang, Y., Li, Q., Shi, L., Bai, B., Wei, N. and Hou, Z., "Carbon Geological Utilization and Storage in China: Current Status and Perspectives," Acta Geotech., 9(1), 7-27(2014). https://doi.org/10.1007/s11440-013-0277-9
  4. Plaza, M. G., Rubiera, G. F., Pis, J. J. and Pevida, C., "Post-combustion $CO_2$ Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies," Chem. Eng. J., 163(1-2), 41-47(2010). https://doi.org/10.1016/j.cej.2010.07.030
  5. Dantas, T. L. P., Amorim, S. M., Luna, F. M. T., Silva, I. J., Azevedo, D. C. S., Rodrigues, A. E. and Moreira, R. F. P. M., "Adsorption of Carbon Dioxide Onto Activated Carbon and Nitrogen-Enriched Activated Carbon: Surface Changes, Equilibrium and Modelng Fixed-bed Adsorption," Sep. Purif. Technol., 45, 73-84 (2010).
  6. Himeno, S., Komatsu, T. and Fujita, S., "High-pressure Adsorption Equilibria of Methane and Carbon Dioxide on Several Activated Carbons," J. Chem. Eng. Data, 50, 369-376(2005). https://doi.org/10.1021/je049786x
  7. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. and Yaghi, O. M., "High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to $CO_2$ Capture," Science 319(5865), 939-943(2008). https://doi.org/10.1126/science.1152516
  8. Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O'Keeffe, M. and Yaghi, O. M., "Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties," J. Am. Chem. Soc., 131(11), 3875-3877(2009). https://doi.org/10.1021/ja809459e
  9. Zhao, D., Cleare, K., Oliver, C., Ingram, C., Cook, D., Szostak, R. and Keva, L., "Characteristics of the Synthetic Heulandite-clinoptilolite Family of Zeolites," Microporous Mesoporous Mater., 21(4-6), 371-379(1998). https://doi.org/10.1016/S1387-1811(98)00131-0
  10. Wang, Q., Luo, Z., Zhong, Z. and Borgna, A., "$CO_2$ Capture by Solid Adsorbents and Their Applications: Current Status and New Trends," Energy Environ. Sci., 4, 42-55(2011). https://doi.org/10.1039/C0EE00064G
  11. Li, J. R., Kuppler, R. J. and Zhou, H. C., "Selective Gas Adsorption and Separation in Metal-Organic Frameworks," Chem. Sco. Rev., 38, 1477-1504(2009). https://doi.org/10.1039/b802426j
  12. Li, J. R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H. K., Balbuena, P. B. and Zhou, H. C., "Carbon Dioxide Capture-related Gas Adsorption and Separation in Metal-organic Frameworks," Coord. Chem. Rev., 255(15-16), 1791-1823(2011). https://doi.org/10.1016/j.ccr.2011.02.012
  13. Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., Yuan, D., Zhao, D., Zhuang, W. and Zhou, H.-C., "Potential Applications of Metal-organic Frameworks," Cood. Chem. Rev., 253(23-24), 3042-3066(2009). https://doi.org/10.1016/j.ccr.2009.05.019
  14. Xu, X., Song, C., Andresen, J. M., Miller, B. G. and Scaroni, A. W., "Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for $CO_2$ Capture," Energy Fuels, 16(6), 1463-1469(2002). https://doi.org/10.1021/ef020058u
  15. Xu, X., Song, C., Miller, B. G. and Scaroni, A. W., "Influence of Moisture on $CO_2$ Separation from Gas Mixture by a Nanoporous Adsorbent Based on Polyethylenimine-Modified Molecular Sieve MCM-41," Ind. Eng. Chem. Res., 44(21), 8113-8119(2005). https://doi.org/10.1021/ie050382n
  16. Ma, X., Wang, X. and Sog, C., ""Molecular Basket" Sorbents for Separation of $CO_2$ and H2S from Various Gas Streams," J. Am. Chem. Soc., 131(16), 5777-5783(2009). https://doi.org/10.1021/ja8074105
  17. Wang, D., Sentorun-Shalaby, C., Ma, X. and Song, C., "High-Capacity and Low-Cost Carbon-Based "Molecular Basket" Sorbent for $CO_2$ Capture from Flue Gas," Energy Fuels, 25(1), 456-458(2011). https://doi.org/10.1021/ef101364c
  18. Kato, M., Yoshikawa, S. and Nakagawa, K., "Carbon Dioxide Absorption by Lithium Orthosilicate in a Wide Range of Temperature and Carbon Dioxide Concentrations," J. Mater. Sci. Lett., 21(6), 475-487(2002).
  19. Xiong, R., Ida, J. and Lin, Y. S., "Kinetics of Carbon Dioxide Sorption on Potassium-doped Lithium Zirconate," Chem. Eng. Sci., 58(19), 4377-4385(2003). https://doi.org/10.1016/S0009-2509(03)00319-1
  20. Venegas, M. J., Fregoso-Israel, E., Escamilla, R. and Pfeiffer, H., "Kinetic and Reaction Mechanism of $CO_2$ Sorption on $Li_4SiO_4$: Study of the Particle Size Effect," Ind. Eng. CHem. Res., 46(8), 2407-2412(2007). https://doi.org/10.1021/ie061259e
  21. Iwan, A., Stephenson, H., Ketchie, W. C. and Lapkin, A. A., "High Temperature Sequestration of $CO_2$ Using Lithium Zirconates," Chem. Eng. J., 146(2), 249-258(2009). https://doi.org/10.1016/j.cej.2008.06.006
  22. LI, Z. S., Cai, N. S. and Huang, Y. Y., "Effect of Preparation Temperature on Cyclic $CO_2$ Capture and Multiple Carbonation-Calcination Cycles for a New Ca-Based $CO_2$ Sorbent," Ind. Eng. Chem. Res., 45(6), 1911-1917(2006). https://doi.org/10.1021/ie051211l
  23. Powell, C. E. and Qiao, G. G., "Polymeric $CO_2/N_2$ Gas Separation Membranes for the Capture Carbon Dioxide from Power Plant Flue Gases," J. Membr. Sci., 279(1-2), 1-49(2006). https://doi.org/10.1016/j.memsci.2005.12.062
  24. Che, T. L., Ahmad, A. L. and Bhatia, S., "Ordered Mesoporous Silica (OMS) as an Adsorbent and Membrane for Separation of Carbon Dioxide ($CO_2$)," Adv. Colloid Interface Sci., 153(1-2), 43-57(2010). https://doi.org/10.1016/j.cis.2009.12.001
  25. Tunio, S. Q., Mehran, H. T., Ghirano, N. A. and Adawy, Z. M. El, "Comparison of Different Enhanced Oil Recovery Techniques for Better Oil Productivity," Int. J. Appl. Sci. Technol., 1, 143-153(2011).
  26. Perera, M., Gamage, R., Rathnaweera, T., Ranathunga, A., Koay, A. and Choi, X., "A Review of $CO_2$-Enhanced Oil Recovery with a Simulated Sensitivity Analysis," Energies, 9(7), 481-502. https://doi.org/10.3390/en9070481
  27. Gozalpour, F., Ren, S. R. and Tohidi, B., "$CO_2$ Eor and Storage in Oil Reservoir," Oil Gas Sci. Technol., 60(3), 537-546(2005). https://doi.org/10.2516/ogst:2005036
  28. Jang, W.-J., Shim, J.-O., Kim, H.-M., Yoo, S.-Y. and Roh, H.-S., "A Review on Dry Reforming of Methane in Aspect of Catalytic Properties," Catal. Today, 324, 15-26(2019). https://doi.org/10.1016/j.cattod.2018.07.032
  29. Fan, M. S., Abdullah, A. Z. and Bhaia, S., "Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas," ChemCatChem 1(2), 192-208(2009). https://doi.org/10.1002/cctc.200900025
  30. Aresta, M. and Dibenedetto, A., "Utilisation of $CO_2$ as a Chemical Feedstock: Opportunities and Challenges," Dalton Trans., 36(28), 2975-2992(2007). https://doi.org/10.1039/b700658f
  31. Song, C., "Global Challenges and Strategies for Control, Conversion and Utilization of $CO_2$ for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing," Catal. Today, 115(1-4), 2-32(2006). https://doi.org/10.1016/j.cattod.2006.02.029
  32. Matsubu, J. C., Yang, V. N. and Christopher, P., "Isolated Metal Active Site Concentration and Stability Control Catalytic $CO_2$ Reduction Selectivity," J. Am. Chem. Soc., 137(8), 3076-3084 (2015). https://doi.org/10.1021/ja5128133
  33. Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A. and Muller, T. E., "Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of $CO_2$," Energy Enivron. Sci., 5(6), 7281-7305(2012). https://doi.org/10.1039/c2ee03403d
  34. Lee, J. H., Lee, D. W., Jang, S. G., Kwak, N. S., Lee, I. Y., Jang, K. R., Choi, J. S. and Shim, J. G., "Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals," Korean J. Chem. Eng., 52(3), 347-354(2014). https://doi.org/10.9713/kcer.2014.52.3.347
  35. Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Dowell, N. M., Fernandez, J. R., Ferrari, M.-C., Gross, R., Hallett, J. P., Haszeldine, R. S., Heptonstall, P., Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R. T., Pourkashanian, M., Rochelle, G. T., Shah, N., Yao, J. G. and Fennell, P. S., "Carbon Capture and Storage Update," Energy Environ. Sci., 7(1), 130-189(2014). https://doi.org/10.1039/C3EE42350F
  36. Goli, A., Shamiri, A., Talaiekhozani, A., Eshtiaghi, N., Aghamohammadi, N. and Aroua, M. K., "An Overview of Biological Processes and Their Potential for $CO_2$ Capture," J. Environ. Mang., 183(1), 41-58(2016). https://doi.org/10.1016/j.jenvman.2016.08.054