DOI QR코드

DOI QR Code

ON WIELANDT-MIRSKY'S CONJECTURE FOR MATRIX POLYNOMIALS

  • Le, Cong-Trinh (Division of Computational Mathematics and Engineering Institute for Computational Science Ton Duc Thang University)
  • Received : 2018.11.06
  • Accepted : 2019.02.27
  • Published : 2019.09.30

Abstract

In matrix analysis, the Wielandt-Mirsky conjecture states that $$dist({\sigma}(A),{\sigma}(B)){\leq}{\parallel}A-B{\parallel}$$ for any normal matrices $A,B{\in}{\mathbb{C}}^{n{\times}n}$ and any operator norm ${\parallel}{\cdot}{\parallel}$ on $C^{n{\times}n}$. Here dist(${\sigma}(A),{\sigma}(B)$) denotes the optimal matching distance between the spectra of the matrices A and B. It was proved by A. J. Holbrook (1992) that this conjecture is false in general. However it is true for the Frobenius distance and the Frobenius norm (the Hoffman-Wielandt inequality). The main aim of this paper is to study the Hoffman-Wielandt inequality and some weaker versions of the Wielandt-Mirsky conjecture for matrix polynomials.

Keywords

References

  1. M. Al-Ammari and F. Tisseur, Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification, Linear Algebra Appl. 436 (2012), no. 10, 3954-3973. https://doi.org/10.1016/j.laa.2010.08.035
  2. R. Bhatia, Perturbation bounds for matrix eigenvalues, Pitman Research Notes in Mathematics Series, 162, Longman Scientific & Technical, Harlow, 1987.
  3. R. Bhatia, C. Davis, and A. McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45-67. https://doi.org/10.1016/0024-3795(83)80007-X
  4. T. H. B. Du, C.-T. Le, and T. D. Nguyen, On the location of eigenvalues of matrix polynomials. Preprint, 2017.
  5. I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, Inc., New York, 1982.
  6. M. Goldberg, Equivalence constants for lp norms of matrices, Linear and Multilinear Algebra 21 (1987), no. 2, 173-179. https://doi.org/10.1080/03081088708817789
  7. G. H. Golub and C. F. Van Loan, Matrix Computations, fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013.
  8. F. Hiai and D. Petz, Introduction to Matrix Analysis and Applications, Universitext, Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-04150-6
  9. A. J. Hoffman and H. W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37-39. http://projecteuclid.org/euclid.dmj/1077465062 https://doi.org/10.1215/S0012-7094-53-02004-3
  10. J. A. Holbrook, Spectral variation of normal matrices, Linear Algebra Appl. 174 (1992), 131-141. https://doi.org/10.1016/0024-3795(92)90047-E
  11. W. Kahan, Inclusion theorems for clusters of eigenvalues of Hermitian matrices. Technical Report, Computer Science Department, University of Toronto, 1967.
  12. A. Pokrzywa, Spectra of operators with fixed imaginary parts, Proc. Amer. Math. Soc. 81 (1981), no. 3, 359-364. https://doi.org/10.2307/2043464
  13. A. Tonge, Equivalence constants for matrix norms: a problem of Goldberg, Linear Algebra Appl. 306 (2000), no. 1-3, 1-13. https://doi.org/10.1016/S0024-3795(99)00155-X