DOI QR코드

DOI QR Code

Update on dentin hypersensitivity: with the focus on hydrodynamic theory and mechanosensitive ion channels

  • Won, Jonghwa (Dental Research Institute and Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University) ;
  • Oh, Seog Bae (Dental Research Institute and Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2019.05.30
  • Accepted : 2019.07.12
  • Published : 2019.09.30

Abstract

Dentin hypersensitivity is an abrupt intense pain caused by innocuous stimuli to exposed dentinal tubules. Mechanosensitive ion channels have been assessed in dental primary afferent neurons and odontoblasts to explain dentin hypersensitivity. Dentinal fluid dynamics evoked by various stimuli to exposed dentin cause mechanical stress to the structures underlying dentin. This review briefly discusses three hypotheses regarding dentin hypersensitivity and introduces recent findings on mechanosensitive ion channels expressed in the dental sensory system and discusses how the activation of these ion channels is involved in dentin hypersensitivity.

Keywords

References

  1. Chung G, Jung SJ, Oh SB. Cellular and molecular mechanisms of dental nociception. J Dent Res 2013;92:948-55. doi: 10.1177/0022034513501877.
  2. Lee K, Lee BM, Park CK, Kim YH, Chung G. Ion channels involved in tooth pain. Int J Mol Sci 2019;20:2266. doi: 10.3390/ijms20092266.
  3. Cook SP, Vulchanova L, Hargreaves KM, Elde R, McCleskey EW. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 1998;387:505-8. doi: 10.1038/387505a0.
  4. Park CK, Kim MS, Fang Z, Li HY, Jung SJ, Choi SY, Lee SJ, Park K, Kim JS, Oh SB. Functional expression of thermo-transient receptor potential channels in dental primary afferent neurons: implication for tooth pain. J Biol Chem 2006; 281:17304-11. doi: 10.1074/jbc.M511072200.
  5. Arana-Chavez VE, Massa LF. Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol 2004;36:1367-73. doi: 10.1016/j.biocel.2004.01.006.
  6. Thomas HF. The extent of the odontoblast process in human dentin. J Dent Res 1979;58(Spec Issue D):2207-18. doi: 10.1177/002203457905800412011.
  7. Magloire H, Couble ML, Romeas A, Bleicher F. Odontoblast primary cilia: facts and hypotheses. Cell Biol Int 2004;28:93-9. doi: 10.1016/j.cellbi.2003.11.006.
  8. El Karim IA, Linden GJ, Curtis TM, About I, McGahon MK, Irwin CR, Lundy FT. Human odontoblasts express functional thermo-sensitive TRP channels: implications for dentin sensitivity. Pain 2011;152:2211-23. doi: 10.1016/j.pain.2010.10.016.
  9. Egbuniwe O, Grover S, Duggal AK, Mavroudis A, Yazdi M, Renton T, Di Silvio L, Grant AD. TRPA1 and TRPV4 activation in human odontoblasts stimulates ATP release. J Dent Res 2014;93:911-7. doi: 10.1177/0022034514544507.
  10. Lee BM, Jo H, Park G, Kim YH, Park CK, Jung SJ, Chung G, Oh SB. Extracellular ATP induces calcium signaling in odontoblasts. J Dent Res 2017;96:200-7. doi: 10.1177/0022034516671308.
  11. Son AR, Yang YM, Hong JH, Lee SI, Shibukawa Y, Shin DM. Odontoblast TRP channels and thermo/mechanical transmission. J Dent Res 2009;88:1014-9. doi: 10.1177/0022034509343413.
  12. Shibukawa Y, Sato M, Kimura M, Sobhan U, Shimada M, Nishiyama A, Kawaguchi A, Soya M, Kuroda H, Katakura A, Ichinohe T, Tazaki M. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Arch 2015;467:843-63. doi: 10.1007/s00424-014-1551-x.
  13. Cho YS, Ryu CH, Won JH, Vang H, Oh SB, Ro JY, Bae YC. Rat odontoblasts may use glutamate to signal dentin injury. Neuroscience 2016;335:54-63. doi: 10.1016/j.neuroscience.2016.08.029.
  14. Sato M, Furuya T, Kimura M, Kojima Y, Tazaki M, Sato T, Shibukawa Y. Intercellular odontoblast communication via ATP mediated by pannexin-1 channel and phospholipase C-coupled receptor activation. Front Physiol 2015;6:326. doi: 10.3389/fphys.2015.00326.
  15. Allard B, Magloire H, Couble ML, Maurin JC, Bleicher F. Voltage-gated sodium channels confer excitability to human odontoblasts: possible role in tooth pain transmission. J Biol Chem 2006;281:29002-10. doi: 10.1074/jbc.M601020200.
  16. Yeon KY, Chung G, Shin MS, Jung SJ, Kim JS, Oh SB. Adult rat odontoblasts lack noxious thermal sensitivity. J Dent Res 2009;88:328-32. doi: 10.1177/0022034509334100.
  17. Brannstrom M, Astrom A. A study on the mechanism of pain elicited from the dentin. J Dent Res 1964;43:619-25. doi: 10.1177/00220345640430041601.
  18. Brannstrom M. The hydrodynamic theory of dentinal pain: sensation in preparations, caries, and the dentinal crack syndrome. J Endod 1986;12:453-7. doi: 10.1016/S0099-2399(86)80198-4.
  19. Pashley DH, Matthews WG, Zhang Y, Johnson M. Fluid shifts across human dentine in vitro in response to hydrodynamic stimuli. Arch Oral Biol 1996;41:1065-72. doi: 10.1016/s0003-9969(96)00059-3.
  20. Charoenlarp P, Wanachantararak S, Vongsavan N, Matthews B. Pain and the rate of dentinal fluid flow produced by hydrostatic pressure stimulation of exposed dentine in man. Arch Oral Biol 2007;52:625-31. doi: 10.1016/j.archoralbio.2006.12.014.
  21. Lin M, Luo ZY, Bai BF, Xu F, Lu TJ. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain. PLoS One 2011;6:e18068. doi: 10.1371/journal.pone.0018068.
  22. Brannstrom M. Sensitivity of dentine. Oral Surg Oral Med Oral Pathol 1966;21:517-26. doi: 10.1016/0030-4220(66)90411-7.
  23. Fried K, Sessle BJ, Devor M. The paradox of pain from tooth pulp: low-threshold "algoneurons"? Pain 2011;152:2685-9. doi: 10.1016/j.pain.2011.08.004.
  24. Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 2011;12:139-53. doi: 10.1038/nrn2993.
  25. Ranade SS, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron 2015;87:1162-79. doi: 10.1016/j.neuron.2015.08.032.
  26. Hermanstyne TO, Markowitz K, Fan L, Gold MS. Mechanotransducers in rat pulpal afferents. J Dent Res 2008;87:834-8. doi: 10.1177/154405910808700910.
  27. Won J, Vang H, Lee PR, Kim YH, Kim HW, Kang Y, Oh SB. Piezo2 expression in mechanosensitive dental primary afferent neurons. J Dent Res 2017;96:931-7. doi: 10.1177/0022034517702342.
  28. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006;124:1269-82. doi: 10.1016/j.cell.2006.02.023.
  29. Kang D, Kim D. TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am J Physiol Cell Physiol 2006;291:C138-46. doi: 10.1152/ajpcell.00629.2005.
  30. Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honore E. TREK-1 is a heat-activated background K(+) channel. EMBO J 2000;19:2483-91. doi: 10.1093/emboj/19.11.2483.
  31. Ramachandran Nair PN. Neural elements in dental pulp and dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995;80:710-9. doi: 10.1016/S1079-2104(05)80256-2.
  32. Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Begay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood JN, Lewin GR, Patapoutian A. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2014;516:121-5. doi: 10.1038/nature13980.
  33. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, Hjerling-Leffler J, Haeggstrom J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 2015;18:145-53. doi: 10.1038/nn.3881.
  34. Magloire H, Lesage F, Couble ML, Lazdunski M, Bleicher F. Expression and localization of TREK-1 K+ channels in human odontoblasts. J Dent Res 2003;82:542-5. doi: 10.1177/154405910308200711.
  35. Allard B, Couble ML, Magloire H, Bleicher F. Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J Biol Chem 2000;275:25556-61. doi: 10.1074/jbc.M002327200.
  36. Bates-Withers C, Sah R, Clapham DE. TRPM7, the $Mg^{2+}$ inhibited channel and kinase. Netherlands: Springer; 2011. 1095 p.
  37. Kwon M, Baek SH, Park CK, Chung G, Oh SB. Single-cell RT-PCR and immunocytochemical detection of mechanosensitive transient receptor potential channels in acutely isolated rat odontoblasts. Arch Oral Biol 2014;59:1266-71. doi: 10.1016/j.archoralbio.2014.07.016.
  38. Won J, Kim JH, Oh SB. Molecular expression of $Mg^{2+}$ regulator TRPM7 and CNNM4 in rat odontoblasts. Arch Oral Biol 2018;96:182-8. doi: 10.1016/j.archoralbio.2018.09.011.
  39. Won J, Vang H, Kim JH, Lee PR, Kang Y, Oh SB. TRPM7 mediates mechanosensitivity in adult rat odontoblasts. J Dent Res 2018;97:1039-46. doi: 10.1177/0022034518759947.
  40. Nakano Y, Le MH, Abduweli D, Ho SP, Ryazanova LV, Hu Z, Ryazanov AG, Den Besten PK, Zhang Y. A critical role of TRPM7 as an ion channel protein in mediating the mineralization of the craniofacial hard tissues. Front Physiol 2016;7:258. doi: 10.3389/fphys.2016.00258.