
Dentin Hypersensitivity 

Pulp tissue inside the intact teeth is densely innervated. 

However, teeth in normal condition is not considered sensitive, 

when compared to other highly sensitive areas of the body 

such as tip of the fingers or vermilion of the lip, as the nerve 

terminals in the pulp tissue are insulated from external stimuli 

by mineralized teeth structures such as enamel and dentin. 

Temperature changes in the noxious ranges or mechanical 

stimulations such as brushing or probing which may damage 

the surrounding soft tissue do not elicit recognizable sensation 

from sound teeth. Only upon the removal of enamel or ce-

mentum with dentin exposure often seen in lesions of dental 

caries or abrasion, patients suffer from sudden and shooting 

pain by subtle stimulation such as changes in temperature 

(cold or hot substances), mechanical stimulation (air puff, teeth 

brushing, probing on dentin) or osmotic stimuli. This exagger-

ated pain evoked by innocuous stimuli is commonly referred as 

dentin hypersensitivity. To explain the unique characteristics 

of dentin hypersensitivity, three hypotheses have been sug-

gested: 1) Neural theory, 2) Odontoblast transducer theory, 3) 

Hydrodynamic theory [1,2]. In this review, these hypotheses of 

dentin hypersensitivity are briefly introduced, and among them, 

the hydrodynamic theory is mainly discussed with a focus on 

the mechanosensitive ion channels as the possible mediator 

for dentin hypersensitivity. 

1. Neural theory

Up to date, various nociceptive sensory transducers for 

temperature, tissue damage, or inflammatory substances 

have been investigated in dental primary afferent neurons, as 
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stimulation of dental pulp have been found to elicit pure pain 

[3]. Molecular screening with single cell reverse transcription 

polymerase chain reaction (RT-PCR) combined with calcium 

imaging or patch clamp has successfully revealed the expres-

sion of classical nociceptive transducers such as thermosensi-

tive transient receptor potential (TRP) channels and adenos-

ine triphosphate (ATP)-sensitive P2X channels, especially in 

small-sized lightly myelinated Aδ-fibers or unmyelinated C-

fibers [3,4]. Nociceptive TRP channels such as TRP vanilloid 

receptor 1 (TRPV1) or TRP ankyrin 1 (TRPA1) which respond to 

noxious heat or cold, respectively, have been detected in den-

tal primary afferent neurons innervating the pulp identified with 

fluorescent tracers, as calcium transients or excitatory currents 

were evoked during application of respective selective agonist 

(TRPV1; capsaicin, TRPA1; icilin) or thermal stimulation (TRPV1; 

＞ 43℃, TRPA1; ＜ 17℃) [4]. Nociceptive P2X channels, which 

respond to extracellular ATP released by tissue damage, have 

also been found to excitatory currents and action potentials 

in dental primary afferent neurons [3]. The functional expres-

sion of nociceptive receptor ion channels in small-sized dental 

primary afferent neurons indicate that noxious stimuli on teeth 

can directly activate nerve terminals of nociceptive neurons 

innervating the pulp to evoke dental pain. However, the con-

tribution of nociceptive receptor ion channels to dentin hyper-

sensitivity may be less significant as teeth do not discriminate 

well between hot and cold in response to noxious thermal 

stimuli, while the discrete hot or cold sensation is evoked by 

thermal stimuli on other somatic areas.

2. Odontoblast transducer theory 

Odontoblasts, originating from the ectomesenchyme cells of 

the neural crest, serve its primary role in dentin formation [5]. 

In addition to their role in dentin formation, odontoblasts have 

been suggested to mediate dental sensation as they con-

sist the outermost compartment of the dentin-pulp complex 

with their processes projecting through the dentinal tubules, 

which leads to propose ‘odontoblast transducer theory’ [1,6,7]. 

A variety of sensory transducers for noxious stimuli such as 

heat (TRPV1), cold (TRP melastatin 8 [TRPM8]), or ATP (P2X) 

have been reported to be expressed in odontoblasts, imply-

ing the possible contribution of odontoblasts to dental sensory 

transduction [8-12]. The possibilities of cellular excitability in 

odontoblasts and ATP or glutamate-dependent neurotrans-

mission from odontoblasts to adjacent nerve terminals have 

been also demonstrated [13-15]. However, it is still under 

debate whether fully differentiated odontoblasts in mature 

teeth is capable of sensing noxious stimuli as TRPV1, TRPA1, 

and TRPM8 were not detected in acutely dissociated primary 

odontoblasts from adult rodents and thus were not responsive 

to nociceptive temperatures [16]. 

3. Hydrodynamic theory 

Originally proposed by Brännstrom and Åström [17,18] who 

found that drying the dentinal fluid by air puff or absorbent 

paper pellets causes dentin hypersensitivity, hydrodynamic 

theory focuses on the possibility of sensory components in the 

dentin-pulp border to be activated by dentinal fluid movement 

caused by various stimuli onto the surface of exposed dentin 

[19-21]. Previous studies based on the hydrodynamic theory 

suggest that the external stimulation on dentin such as prob-

ing, brushing, or air puff results in movement of dentinal fluid 

in the dentin-pulp complex or cause deformation of tubule 

contents [21,22]. In order to respond to such fluid movement 

or deformation of cellular components, sensory receptor ion 

channels for mechanical transduction are required, espe-

cially those which can also mediate light mechanical stimuli 

[1,23]. Therefore, the functional expression of mechanosen-

sitive ion channels that can be activated by light stimuli (i.e. 

low-threshold mechanosensitive ion channels, LTMs), rather 

than those activated by noxious mechanical forces (i.e. high-

threshold mechanosensitive ion channels [HTMs]), have been 

gaining interest in dental sensory components. Among the 

putative mechanosensitive ion channels such as acid-sensing 

ion channels (ASICs), TRPs, Piezos, K+ channel subfamily K 

(KCNKs) and transmembrane channel-like proteins (TMCs) 

[24,25], several candidate ion channels expressed by dental 

primary afferent neurons and odontoblasts have been sug-

gested to be involved in dental sensation. 

Expression of Mechanosensitive Ion 
Channels in Dental Sensory System 

1.  Mechanosensitive ion channel expression in dental 

primary afferent neurons 

Molecular screening in dental primary afferent neurons by 

single cell RT-PCR have revealed the expression of ASIC3, 

TRPA1, TRPV1, TRPV2, TWIK-related K+ channel 1 (TREK-1), 

TREK-2, Piezo2, whereas TRPV4, TRPM3, TWIK-related ara-

chidonic acid-stimulated K+ channel (TRAAK) and Piezo1 were 
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reported to be undetected in these cells [4,26,27]. ASIC3 has 

been suggested to participate in noxious mechanical trans-

duction but whether ASIC3 plays a critical role as a mecha-

nosensitive ion channel is controversial as demonstration of 

mechanical activity of ASIC3 has been unsuccessful in heter-

ologous expression system, and dorsal root ganglion neurons 

of transgenic animals lacking ASIC3 did not show alterations in 

electrophysiological activity under mechanical stimulation [24]. 

The functional expression of TRP channels have been demon-

strated in dental primary afferent neurons by pharmacological 

or thermal stimulation of the respective channels [4], although 

whether these channels mediate mechanosensitivity has 

not been identified yet. Among the TRP channels expressed 

in dental primary afferent neurons, it is possible that TRPA1 

mediate pulpitis-related pain as TRPA1 has been found to par-

ticipate in mechanical hyperalgesia under inflammation [28]. 

TREK channels are suggested to modulate rather than directly 

mediate mechanical transduction in small-sized nociceptive 

neurons which remain in the pulp rather than innervating the 

dentin-pulp border [29-31]. Piezo2, in contrast to the other 

putative mechanosensitive ion channels mentioned above, 

has been found to mediate tactile sensation by light touch by 

generating mechanically-sensitive rapidly inactivating non-

selective inward currents [32]. In a recent study, the functional 

expression of Piezo2 has been demonstrated by patch clamp 

recording in the majority of mechanosensitive dental primary 

afferent neurons [27]. These neurons were mostly medium- to 

large-sized but also contained calcitonin gene related peptide 

(CGRP) and Nav1.8, which seem paradoxical as these are no-

ciceptive neurotransmitter and sodium channels expressed in 

nociceptive neurons, respectively [27]. This paradoxical char-

acter of Piezo2 positive-dental primary afferent neurons also 

showing nociceptive markers seem to reflect ‘algoneurons’, a 

putative population of dental primary afferent neurons which 

mediate dentin hypersensitivity by transducing innocuous hy-

drodynamic mechanical stimulation into nociceptive signaling 

[23]. Transcriptome analysis on dental primary afferent neurons 

with low threshold mechanosensitive ion channels may shed 

light on understanding the involvement of ‘algoneurons’ or 

Piezo2-positive populations in dentin hypersensitivity [33]. 

2. Mechanosensitive ion channels in odontoblasts 

The expression of mechanosensitive ion channels in odon-

toblasts has also been investigated in scope of hydrodynamic 

theory as stimulation on exposed dentin results in movement 

of dentinal fluid and causes displacement of odontoblasts and 

their processes [21,22]. Therefore, the functional expression 

of nociceptive TRP channels with mechanosensitive properties 

such as TRPV1, TRPV2, TRPV4 or TRPA1 were investigated 

in odontoblasts and the activation of these channels has been 

demonstrated in odontoblasts derived from neonatal rats by 

calcium imaging studies [12]. Mechanical deformation of odon-

toblasts evoked intracellular calcium transients which were 

partially blocked by TRPV1, TRPV2, TRPV4, and TRPA1 antag-

onist, indicating the possible involvement of these channels in 

dental nociception [12]. As these nociceptive TRP channels are 

high-threshold mechanosensitive ion channels which mediate 

injurious mechanical stimuli, these channels may be less in-

volved in transducing subtle mechanical perturbations caused 

by dentinal fluid movement when expressed in mature odon-

toblasts. In addition, mechanosensitive K+-permeable chan-

nels such as Ca2+-activated K+ channels and TREK-1 channels 

have also been detected in odontoblast-like cells by immu-

nohistochemical methods, but their functional expression in 

odontoblasts have not been demonstrated yet [34,35]. When 

considering the nature of K+-permeable channels, the activa-

tion of these channels would rather result in membrane hyper-

polarization than to have an excitatory effect. In odontoblasts 

from adult rats, TRPM7 has been detected in the majority of 

odontoblasts by single cell RT-PCR and immunohistochemi-

cal methods [36-39]. Furthermore, mechanosensitive calcium 

transients mediated by TRPM7 activation were detected in 

odontoblasts during hypotonic solution-induced membrane 

stretch by calcium imaging studies [39]. Interestingly, TRPM7 

was mostly localized in the odontoblastic process, emphasizing 

its possible role in detecting alterations in dentinal tubules [39]. 

However, interpreting these results to deduce the primary role 

of TRPM7 in mechanical transduction for dentin hypersensitiv-

ity should be done with caution as TRPM7 has also been found 

to be crucial in dentin mineralization by regulating alkaline 

phosphatase activity [40]. Whether the ubiquitous expression 

of TRPM7 is mainly involved in mechanical transduction or 

dentin mineralization is to be answered in future studies. 

Conclusions

The mechanism of dentin hypersensitivity, the abrupt intense 

pain caused by innocuous stimuli on exposed dentinal tubules, 

have been attempted to be explained by the cellular compo-

nents underlying dentin, the dental primary afferent neurons 

and odontoblasts. Among the dental primary afferent neurons, 
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the subpopulation expressing low-threshold mechanosensi-

tive ion channels may be a candidate for nociceptive signalling 

regarding dentin hypersensitivity in terms of hydrodynamic 

theory as large, myelinated neurons which are involved in light 

touch sensation when expressed in somatic sensory neurons 

paradoxically exhibit nociceptive characteristics. On the other 

hand, traditional nociceptive neurons representing neural the-

ory may mediate dental pain evoked by noxious stimuli rather 

than dentin hypersensitivity. Lastly, the mechanosensitive ion 

channels expressed in odontoblasts indicate the possibility of 

odontoblasts to participate not only in dentin hypersensitivity 

explained by hydrodynamic theory but also in dentin formation 

under dentinal fluid dynamics following dentin exposure (Fig. 1). 

Further investigation on the expression of mechanosensitive 

ion channels and their modulatory mechanism will greatly help 

in advancing clinical strategies to treat dentin hypersensitivity. 
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