DOI QR코드

DOI QR Code

직접접촉식 응축기를 통한 가압순산소 연소 배가스 내 SOx, NOx 동시저감 연구

Simultaneous Removal of SOx and NOx in Flue Gas of Oxy-fuel Combustion by Direct Contact Condenser

  • 투고 : 2019.07.31
  • 심사 : 2019.08.28
  • 발행 : 2019.09.30

초록

가압순산소 연소는 발전 공정의 온실가스 포집 기술의 하나로서, $CO_2$의 압축 전 단계에 FGC (Flue gas condensor)를 통해 배가스 내 수분의 잠열을 회수하여 효율을 높일 수 있다. 또한 FGC는 가스의 용해도를 이용하여 $SO_x$$NO_x$를 동시에 효과적으로 제거할 수 있는 장점이 있다. 이 연구에서는 FGC의 방식 중 하나로서 직접 접촉식 응축기를 고안하여 $SO_x$$NO_x$의 저감율을 평가하였다. 특히 가스가 물에 직접 통과할 때 용해를 통한 저감효율을 측정하기 위해 단독가스와 혼합가스로 분리하여 상압에서 10 bar까지의 압력조건을 변수로 실험을 진행하였다. 단독 가스 실험결과 $NO_x$는 상압에서 저감율이 약 20%, 10 bar 압력조건에서 약 76%로 크게 증가하였다. 또한 $SO_2$는 높은 용해도로 전량이 용해하여 초기 저감율에 큰 차이가 나타나지 않았으나, 압력이 증가할수록 최고 저감율이 유지되는 시간이 증가하였다. 동시저감 실험 결과 상압에서 $NO_x$의 저감율은 13%이나, 압력이 상승할수록 헨리법칙에 의한 용해도 증가에 따라 20 bar에서 56%로 증가하였다. $SO_2$는 초기에 다량 용해된 후 다시 배출 농도가 증가하는 폭이 상압에서는 1,219 ppm, 20 bar에서는 165 ppm으로 감소하였다. 결론적으로 $NO_x$$SO_x$ 모두 압력이 높아질수록 저감율이 증가하였으나, 단독가스 실험과 비교하면 저감율이 감소함을 확인하였다. 이는 혼합가스 투입으로 인해 반응기 내부에 채운 물의 산성화가 빠르게 이루어졌기 때문이다.

Pressurized oxy-fuel combustion is a promising technology for $CO_2$ capture with a benefit of improving power plant efficiency compared with atmospheric oxy-fuel combustion. Prior to $CO_2$ compression in this process, a flue gas condenser (FGC) is used to remove $H_2O$ while recovering the latent heat. At the same time, the FGC has a potential for high-efficiency removal of $SO_x$ and $NO_x$ by exploiting their good solubility in water. In this study, experiments were carried out in a lab-scale, direct contact FGC under different pressures varying between 1 and 20 bar to evaluate the removal efficiency of $SO_2$ and $NO_x$ for individual gases and their mixture. In the tests for individual gases, 20% and 76% of $NO_x$ was removed at 1 bar and 10 bar, respectively. Even higher removal efficiencies were achieved for $SO_2$, and also these were maintained for longer as the pressure increased. In the tests for $SO_2$ and $NO_x$ mixture, the removal efficiency of $NO_x$ increased from 13% at 1 bar to 56% at 20 bar because of higher solubility at elevated pressures. $SO_2$ in the mixture was initially dissolved almost completely and then increased by 1,219 ppm at 1 bar and by 165 ppm at 20 bar. Overall, the removal efficiency of $SO_2$ and $NO_x$ was increased at elevated pressures, but it was lower in the mixture compared with individual gases at identical conditions because of a lower pH and associated chemical reactions in water.

키워드

참고문헌

  1. White, V., Murciano L. T., Sturgeon, D., and Chadwick, D., "Purification of Oxyfuel-Derived $CO_2$," Energy Procedia, 1, 399-406 (2009). https://doi.org/10.1016/j.egypro.2009.01.054
  2. Murciano, L. T., White, V., Petrocelli F., and Chadwick, D., "Sour Compression Process for the Removal of $SO_x$ and $NO_x$ from Oxyfuel Derived $CO_2$," Energy Procedia, 4, 908-916 (2011). https://doi.org/10.1016/j.egypro.2011.01.136
  3. Tumsa, T. Z., Lee, S. H., Normann F., Andersson, K., Ajdari S., and Yang, W., "Concomitant Removal of $NO_x$ and $SO_x$ from a Pressurized Oxy-fuel Combustion Process using a Direct Contact Column," Chem. Eng. Res. Des., 131, 626-634 (2018). https://doi.org/10.1016/j.cherd.2017.11.035
  4. Choi, S. M., "Conceptual Design of 100 MWe Oxy-coal Power Plant-Youngdong Project," J. Korean Soc. Combust., 17(3), 30-45 (2012).
  5. Choi, G.-G., Na, G.-S., Shin, J.-H., Keel, S.-I., Lee, J.-K., Heo, P.-W., and Yun, J.-H. "Pollutants Behavior in Oxy-CFBC by Application of In-Furnace $deSO_x/deNO_x$ Method" Clean Technol., 24(3), 212-220 (2018). https://doi.org/10.7464/KSCT.2018.24.3.212
  6. Lee, S. H., and Huh, K. Y., "Comparison of the Combustion Characteristics Between Air Combustion and Oxy-combustion with $CO_2$ Recirculation," J. Korean Soc. Combust., 13(3), 24-32 (2008).
  7. Chen, L., Yong, S. Z., and Ghoniem, A. F., "Oxy-fuel Combustion of Pulverized Coal: Characterization, Fundamentals, Stabilization and CFD Modeling," Progress Energy Com. Sci., 38(2), 156-214 (2012). https://doi.org/10.1016/j.pecs.2011.09.003
  8. Wu, W., Han, B., Gao, H., Liu, Z., and Jiang, T., "Desulfurization of Flue Gs: $SO_2$ Absorption by an Ionic Liquid," Angew. Chem. Int. Ed., 43, 2415-2417 (2004). https://doi.org/10.1002/anie.200353437
  9. Ting, T., Stanger, R., and Wall, T., "Laboratory Investigation of High Pressure NO Oxidation to $NO_2$ and Capture with Liquid and Gaseous Water under Oxy-fuel $CO_2$ Compression Conditions," Int. J. Green. Gas Control, 18, 15-22 (2013). https://doi.org/10.1016/j.ijggc.2013.06.016
  10. White, V., Wright, A., Tappe, S., and Yan, J., "The Air Products Vattenfall Oxyfuel $CO_2$ Compression and Purification Pilot Plant at Schwarze Pumpe," Energy Procedia, 37, 1490-1499 (2013). https://doi.org/10.1016/j.egypro.2013.06.024
  11. Loerting, T., Tautermann, C., Kroemer, R. T., Kohl, I., Hallbrucker A., Mayer E., and Lied K. R., "On the Surprising Kinetic Stability of Carbonic Acid ($H_2CO_3$)," Angew. Chem. Int. Ed., 39(5), 891-894 (2000). https://doi.org/10.1002/(SICI)1521-3773(20000303)39:5<891::AID-ANIE891>3.0.CO;2-E
  12. Po, H. N., and Senozan, N. M., "The Henderson-Hasselbalch equation: its history and limitations," J. Chem. Edu., 78(11), 1499 (2001). https://doi.org/10.1021/ed078p1499
  13. Sander, R., "Compilation of Henry's Law Constants (version 4.0) for Water as Solvent," Atmos. Chem. Phys., 15, 4399-4981, (2013). https://doi.org/10.5194/acp-15-4399-2015
  14. Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H., "Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation No. 17," JPL Publication, 10-6 (2011).
  15. Yoo, K.-P., Lee, S. Y., and Lee, W. H., "Ionization and Henry's Law Constants for Volatile, Weak Electrolyte Water Pollutants," Korean J. Chem. Eng., 3, 67-72, (1986). https://doi.org/10.1007/BF02697525
  16. Lee, Y.-N., and Schwartz, S. E., "Reaction Kinetics of Nitrogen Dioxide with Liquid Water at Low Partial Pressure," J. Phys. Chem., 85, 840-848, (1981). https://doi.org/10.1021/j150607a022
  17. Warneck, P., and Williams, J., "The Atmospheric Chemist's Companion: Numerical Data for Use in the Atmospheric Sciences," Springer Science & Business Media, (2012).
  18. Carroll, J. J., Slupsky, J. D., and Mather, A. E., "The solubility of carbon dioxide in water at low pressure," J. Phys. Chem., 20, 1201-1209, (1991).