DOI QR코드

DOI QR Code

온도와 압력의 변화에 따른 석유계 및 바이오항공유의 점화특성 분석

Ignition Characteristics of Petroleum-based and Bio Aviation Fuel According to the Change of Temperature and Pressure

  • 투고 : 2019.06.06
  • 심사 : 2019.06.22
  • 발행 : 2019.09.30

초록

본 연구에서는 온도와 압력의 변화에 따른 석유계항공유(Jet A-1), 바이오항공유(Bio-6308) 그리고 두 항공유를 50:50 (v:v)으로 혼합한 연료의 점화특성의 변화에 대한 분석을 수행하였다. Combustion research unit (CRU) 장비를 사용하여 각 항공유의 점화지연시간을 측정하였으며, GC/MS 및 GC/FID를 사용하여 각 항공유를 구성하는 화합물에 대한 정성 및 정량적인 분석을 수행하였다. 그 결과, 모든 연료의 경우에서 온도와 압력이 증가할수록 점화지연시간이 짧게 측정 되었으며, 특히 압력보다 온도의 영향을 더 많이 받는 것을 확인하였다. 또한, 모든 측정 조건에서 Jet A-1의 점화지연시간이 가장 길게 측정되었는데 이는 Jet A-1을 약 22.48%의 비율로 구성하는 방향족화합물이 산화되는 과정에서 생성되는 benzyl radical이 구조적으로 매우 안정한 특성을 갖기 때문인 것으로 판단되었다. 이러한 benzyl radical은 negative temperature coefficient (NTC) 구간에 영향을 줄 수 있는 반응을 억제하여, Jet A-1의 경우에서는 온도가 증가함에 따라 점화지연시간이 짧아지는 정도가 감소하는 구간이 없는 것을 확인하였다. Jet A-1과 Bio-6308을 50:50 (v:v)으로 혼합한 연료의 점화특성은 Bio-6308 보다는 Jet A-1과 비슷한 경향을 나타내는 것을 통해 기존의 시스템을 변경하지 않고서도 실제로 적용이 가능함을 확인하였다.

In this study, the ignition characteristics of petroleum-based aviation fuel (Jet A-1), bio aviation fuel (Bio-6308), and blended aviation fuel (50:50, v:v) were analyzed in accordance with change of temperature and pressure. The ignition delay time of each aviation fuel was measured by combustion research unit (CRU) and the compositions of the fuels were analyzed by GC/MS and GC/FID for qualitative and quantitative results. From the results, it was confirmed that the ignition delay times of all aviation fuels were shortened with increasing temperature and pressure. In particular, the effect of temperature was larger than the effect of pressure. Also, the ignition delay time of Jet A-1 was the longest at all measurement conditions, and it was judged that this result is because of the structurally stable characteristics of the benzyl radical generated during the oxidation reaction of the aromatic compound (about 22.48%) in Jet A-1. Also, it was confirmed that Jet A-1 had no section where the degree of shortening of ignition delay time was decreased by increasing temperature, which was because the benzyl radical inhibits the response that can affect the negative temperature coefficient (NTC). The ignition characteristics of blended aviation fuel (50:50, v:v) showed a similar tendency to those of Jet A-1, rather than to those of Bio-6308, so that the blended aviation fuel (50:50, v:v) can be applied to the existing system without any change.

키워드

참고문헌

  1. "Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps," Energy Efficiency & Renewable Energy, Report No. 1515 (2017).
  2. Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., and Mekhilef, S., "A Comprehensive Review on Biodiesel as an Alternative Energy Resource and its Characteristics," Renew. Sustain. Energy Rev., 16(4), 2070-2093 (2012). https://doi.org/10.1016/j.rser.2012.01.003
  3. Susan, V. D., Jack, S., Francisco, B., Deger, S., Alessandra S., and Amr, S., "Biofuels for Aviation Technology Brief," International Renewable Energy Agency, Abu Dhabi, 2-4 (2017).
  4. "ICAO Environmental Report 2016: Aviation and Climate Change," International Civil Aviation Organization, Canada, 153-178 (2016).
  5. John, B. H., "Internal Combustion Engine Fundamentals," McGraw-Hill Book Company, New York, 539-540 (1988).
  6. Petrukhin, N. V., Grishin, N. N., and Sergeev, S. M., "Ignition Delay Time - an Important Fuel Property," Chem. Technol. Fuels Oils, 51(6), 581-584 (2016). https://doi.org/10.1007/s10553-016-0642-0
  7. Gauthier, B. M., Davidson, D. F., and Hanson, R. K., "Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures," Combust. Flame, 139(4), 300-311 (2004). https://doi.org/10.1016/j.combustflame.2004.08.015
  8. Robert, D., Hawthorn, and Alan, C. N., "Shock Tube Ignition Delay Studies of Endothermic Fuels," AIAA, 4(3), 513-520 (1966). https://doi.org/10.2514/3.3466
  9. Nimal, N. S., Mani, S., and Chung, S. H., "Ignition Delay Time Sensitivity in Ignition Quality Tester (IQT) and its Relation to Octane Sensitivity," Fuel, 233, 412-419 (2018). https://doi.org/10.1016/j.fuel.2018.05.131
  10. Kang, S. B., and Jeong, B. H., "Analysis on Ignition Delay Time according to the Ratio of Bio Aviation Fuel in Jet A-1 Mixture," J. Kor. Soc. Propul. Eng., 23(2), 13-20 (2019).
  11. "Determination of Ignition and Combustion Characteristics of Residual Fuels - Constant Volume Combustion Chamber Method,"Energy Institute, London (2006).
  12. Battin, L. F., "Detailed Chemical Kinetic Models for the Low-Temperature Combustion of Hydrocarbons with Application to Gasoline and Diesel Fuel Surrogates," Prog. Energy Combust. Sci., 34(4), 440-498 (2008). https://doi.org/10.1016/j.pecs.2007.10.002
  13. Michael, D. B., Miao, T., Emiel, J. M. H., and Mani, S., "Impact of Fuel Molecular Structure on Auto-Ignition Behavior - Design Rules for Future High Performance Gasolines," Prog. Energy Combust. Sci., 60, 1-25 (2017). https://doi.org/10.1016/j.pecs.2016.12.001
  14. Rakesh, K. M., "Characteristics and Control of Low Temperature Combustion Engines: Employing Gasoline, Ethanol and Methanol," Springer International Publishing, India, 139 (2018).
  15. Carrigan, J. H., Donald, R. B., and Jeffrey, A. M., "Chapter Three - Combustion Pathways of Biofuel Model Compounds: A Review of Recent Research and Current Challenges Pertaining to First-,Second-,and Third-Generatioon Biofuels," Adv. Phys. Org. Chem., 49, 103-187 (2015).
  16. Emdee, J. L., Brezinsky, K., and Glassman, I., "A Kinetic Model for the Oxidation of Toluene near 1200 K," J. Phys. Chem., 96(5), 2151-2161 (1992). https://doi.org/10.1021/j100184a025
  17. Andrae, J., Johansson, D., Bjornborn, P., Risberg, P., and Kalghatgi, G., "Co-Oxidation in the Auto-Ignition of Primary Reference Fuels and n-heptane/toluene Blends," Combust. Flame, 140(4), 267-286 (2005). https://doi.org/10.1016/j.combustflame.2004.11.009
  18. Vanhove, G., Petit, G., and Minetti, R., "Experimental Study of the Kinetic Interactions in the Low-Temperature Autoignition of Hydrocarbon Binary Mixtures and a Surrogate Fuel," Combust. Flame, 145(3), 521-532 (2006). https://doi.org/10.1016/j.combustflame.2006.01.001