DOI QR코드

DOI QR Code

농가규모 양돈분뇨 퇴비화시 공기공급량 변화에 따른 퇴비 특성 평가

Evaluation of Composting Characteristics According to the Air Supply Change in Farm-Sized Swine Manure

  • 이성현 (국립축산과학원 축산환경과) ;
  • 정광화 (국립축산과학원 축산환경과) ;
  • 이동준 (국립축산과학원 축산환경과) ;
  • 이동현 (국립축산과학원 축산환경과) ;
  • 장유나 (국립축산과학원 축산환경과) ;
  • 곽정훈 (국립축산과학원 축산환경과)
  • Lee, Sunghyoun (Animal Environment Division, National Institute of Animal Science) ;
  • Jeong, Gwanghwa (Animal Environment Division, National Institute of Animal Science) ;
  • Lee, Dongjun (Animal Environment Division, National Institute of Animal Science) ;
  • Lee, Donghyeon (Animal Environment Division, National Institute of Animal Science) ;
  • Jang, Yuna (Animal Environment Division, National Institute of Animal Science) ;
  • Kwag, Junghoon (Animal Environment Division, National Institute of Animal Science)
  • 투고 : 2019.07.08
  • 심사 : 2019.09.10
  • 발행 : 2019.09.30

초록

양돈분뇨는 퇴비화하여 이용할 경우 좋은 유기물 자원이 될 수 있으며, 양돈 분뇨를 효율적으로 이용하기 위한 많은 실험적 연구가 수행되었다. 본 연구에서는 양돈분뇨를 톱밥과 혼합하여 여러 가지 퇴비화 조건에서 퇴비화 촉진정도를 실제 농가 현장에서 활용할 수 있도록 시험규모를 확대하여 수행하였다. 퇴비화 시험처리는 퇴비화기간 동안 공기를 송풍하지 않은 대조구와 퇴비화기간 동안 퇴비단 아래에서 공기를 송풍한 시험구로 구분하였다. 시험을 위한 퇴비단의 크기는 각각 $5m^3$로 조성하였다. 시험구 1 (EXP1)에는 돈분 $1m^3$당 100 L의 공기를 송풍하였으며, 시험구 2 (EXP2)에는 돈분 $1m^3$당 150 L의 공기를 송풍하였다. 공기공급량을 $1m^3$당 100 L, 150 L로 한 것은 현재 활용하고 있는 퇴비화시설 설계 규정에 가축분 $1m^3$당 150 L의 규모의 송풍 시설을 설치할 것을 권장하고 있으나 현장에서는 과다 송풍 우려가 발생하고 있기 때문에 이에 대한 검토가 필요하기 때문이었다. 퇴비화 발효기간은 4주로 하였으며, 퇴비화 시작 직후부터 매주 퇴비단의 샘플을 채취하여 물리 화학적 성분을 조사 분석 하였다. 퇴비단의 온도는 퇴비단 표면으로부터 약 40cm 지점에 온도센서를 설치하여 매 30분 간격으로 기록하였다. 발효온도를 분석한 결과 시험구에서는 공기를 송풍한 1~2일차에 최고온도 $67{\sim}75^{\circ}C$에 도달하였다. 이는 호열성 세균이 급격하게 증가 활동하였기 때문으로 판단되었다. 퇴비화기간 동안 수분함량, 총질소, EC의 값이 송풍발효가 완료된 4주차에 대조구에 비해 낮은 것으로 나타났다. 하지만 pH와 유기물 함량은 시험구에서 대조구에 비해 높게 나타났다. 송풍발효가 끝난 4주차의 부숙정도를 평가하기 위하여 종자발아지수를 분석한 결과 대조구에서 23.49, 시험구 1이 68.50, 시험구 2가 51.81로 나타났다. 종자 발아지수로 평가한 퇴비의 부숙은 대조구에 비해 시험구에서 매우 높은 것으로 나타났다. 따라서 양돈분뇨의 퇴비화시 외부로부터 가축분뇨 $1m^3$당 100~150 L/min의 공기를 공급하는 것이 퇴비의 부숙을 매우 빠르게 할 수 있는 것으로 나타났다.

Swine manure has been recognized as a organic sources for composting and many research was conducted to efficiently utilize and treat. This study was to evaluate a feasibility for producing swine manure compost under various treatment with mixture of swine manure and saw dust. Treatments were designed as follows; non aerated composting pile(REF), aerated composting pile of $100L/m^3$(EXP1), and aerated composting pile of $150L/m^3$(EXP2). The total days of fermentation were 28 days and each samples were collected at every 7 days from starting of composting. Temperature sensors were installed under 30~40cm from the surface of composting pile. Inner temperature in composting piles of EXP1 and EXP2 was rapidly increased to $67{\sim}75^{\circ}C$ within 1~2 days. The elevated temperatures found during the thermophilic phase are essential for rapid degradation of organic materials. While swine manure composted, moisture content, total nitrogen, EC of EXP1, EXP2 in sample at 28 days were lower than those of REF. But, pH and organic matter of EXP1, EXP2 in sample at 28 days were higher than those of REF. After finishing fermentation experiment, maturity was evaluated with germination test. Calculated germination index(GI) at REF, EXP1 and EXP2 were 23.49, 68.50 and 51.81, respectively. The values of germination index were higher at EXP1 and EXP2 which is aerated composting piles than REF which is non aerated composting pile. According to the results, composting process by aerated static pile compost had significant effect on the reduction of required period for composting. Supplying adequate amount of air to compost swine manure will greatly reduce composting period.

키워드

참고문헌

  1. Ministry of Agriculture, Food and Rural Affairs (MAFRA), Statistics of Agricultural Products. (2017.2018).
  2. Sohn, B. K., Hong, J. H. and Park, K. J., "Comparative studies on static windrow and aerated static pile composting of the mixture of cattle manure and rice hulls 1. Variation of physion chemical parameters", J. Korean Soc. Soil Sci. Fert., 29(4), pp. 403-410. (1996).
  3. Hong, J. H., "Quality criteria of manure compost and composting odor control", J. Livws. Hous. Env., 9(1), pp. 57-60. (2003).
  4. Jeong, K. H., Kang, H., Kim, T. I., Park, C.H. and Yang, C. B., "Effect of aeration on the physicochemical characteristics of livestock feces compost during composting period", J. of KOWREC, 11(4), pp. 57-65. (2003).
  5. Kim S. K., Ok, Y. S., Yoon, Y. M., Kim, D. Y., Lim, S. K., Eom, K. C. and Kim, J. G., "Physical and chemical quality of organic by product fertilizers by composting of livestock manure in Korea", Korean J. Soil Sci. Fert., 39(4), pp. 224-229. (2006).
  6. Kim, K. Y., Choi, H. L., Ko, H. J. and Kim, C. N., "Estimation of ammonia emission during composting livestock manure based on the degree of compost maturity", J. Anim. Sci. & Technol, 48(1), pp. 123-130. (2006). https://doi.org/10.5187/JAST.2006.48.1.123
  7. Kim, Y. S., Lee, T. S., Cho, S. H., Jeong, J. Y., An, J. Y., Lee, J. J., Han, K. P. and Hong, J. H., "Plant growth responses and characteristics of composting of poultry manure with peatmoss and cocopeat as bulking agent", Journal of the Korea Organic Resources Recycling Association, 25(1), pp. 79-86. (2017).
  8. Jeong, K. H., Kim, J. K., Khan, M. A., Han, D. W. and Kwag, J. H., "A study on the characteristics of livestock manure treatment facilities in Korea", J. of the Korean Organic Resources Recycling Association, 22(4), pp. 28-44. (2014). https://doi.org/10.17137/Korrae.2014.22.4.028
  9. Atalia, K. R., Buha, D. M., Bhavsar, K. A. and Shah, N. K., "A review on composting of municipal solid waste", IOSR Journal of Environmental Science, Toxicology and Food Technology, 9(5), pp. 20-29. (2015).
  10. Kulcu, R. and Yaldiz, O., "Determination of aeration rate and kinetics of composting some agricultural wastes", Bioresource Technology, 93, pp. 49-57. (2004). https://doi.org/10.1016/j.biortech.2003.10.007
  11. Liu, Z., Powers, W. and Mukhtar, S., "A review of practices and technologies for odor control in swine production facilities", Applied Engineering in Agriculture, 30(3), pp. 477-492. (2014).
  12. Manu, M. K., Kumar, R. and Garg, A., "Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum", Bioresource Technology, 234, pp. 167-177. (2017). https://doi.org/10.1016/j.biortech.2017.03.023
  13. Tuomela, M., Vikman, M., Hatakka, A. and Itavaara, M., "Biodegradation of lignin in a compost environment: a review", Bioresource Technology, 72, pp. 169-183. (2000). https://doi.org/10.1016/S0960-8524(99)00104-2
  14. Garg, A. and Tothill, I. E., "A review of solid waste composting process -The UK perspective", Dynamic Soil, Dynamic Plant, pp. 57-63. (2009).
  15. Dorota, K., "Kinetics of organic matter removal and humification progress during sewage sludge composting", Waste management, 49, pp. 196-203. (2016). https://doi.org/10.1016/j.wasman.2016.01.005
  16. Yun, H. B., Lee, Y. J., Kim, M. S., Lee, S. M., Lee, Y. and Lee, Y. B., "Composting of pig manure affected by mixed ratio of sawdust and rice hull", Korean J. Soil Sci. Fert., 45(6), pp. 1032-1036. (2012). https://doi.org/10.7745/KJSSF.2012.45.6.1032
  17. Yang, I. S., Ji, M. K. and Jeon, B. H., "A review on efficient operation technology of compost depot", Clean Technol, 23(4), pp. 345-356. (2017). https://doi.org/10.7464/KSCT.2017.23.4.345
  18. Beatty, G. and Zygmunt, H., "Conversion to value0added products: Composting. Office of wastewater management", Environment Protection Agency, US. Available online.
  19. Bustamante, M. A., Paredes, C., Marhuenda-Egea, F. C., Perez-Espinosa, A., Bernal, M. P. and Moral, R., "Co-composting of distillery wastes with animal manures: carbon and nitrogen transformation in the evaluation of compost stability", Chemosphere, 72, pp. 551-557. (2008). https://doi.org/10.1016/j.chemosphere.2008.03.030
  20. Lo, K. V., Lau, A. K. and Liao, P. H., "Composting of separated solid swine waste", J. Agric. Engr. Res., 54, pp. 307-317. (1993). https://doi.org/10.1006/jaer.1993.1023
  21. Shin, J. H., Lee, J. W., Nam, J. H., Park, S. Y. and Lee, D. H., "Bacterial community dynamics during composting of food wastes", The Korean J. Microbiol, 45(2), pp. 148-154. (2009).
  22. Chang, K. W. and Yu, Y. S., "Composting of small scale static pile by addition of microorganism", J. Kor. Org. Resour. Recyc. Assoc., 11(1), pp. 49-153. (2003).
  23. Cardenas, R. R. and Wang, L. K., "Evaluation of city refuse compost maturity: A review", Biol. Wastes, 27, pp. 115-142. (1989). https://doi.org/10.1016/0269-7483(89)90039-6
  24. Kumar, M., Ou, Y. L. and Lin, J. G., "Co-composting of green waste and food waste at low C/N ratio", Waste management, pp. 602-609. (2010).
  25. Lee, Y. S., Choi, H. K., Kim, J. K., Lee, Y. H., Chung, K. T., Roh, J. S. and Suh, M. G., "Optimum mixing ratio of sewage sludge during composting of food wastes", J. Kor. Envir. Health, 30(5), pp. 366-373. (2004).