DOI QR코드

DOI QR Code

Variation in Physicochemical Properties and Anaerobic Digestion Efficiency by Thermal-alkali Pre-treatment (THAP) Factors

열화학적 가수분해 영향인자에 따른 물리화학적 특성 변화 및 혐기성소화 효율 평가

  • Park, Seyong (Bioresource Center, Institute for Advanced Engineering) ;
  • Han, Sungkuk (Bioresource Center, Institute for Advanced Engineering) ;
  • Song, Eunhey (Bioresource Center, Institute for Advanced Engineering) ;
  • Kim, Choonggon (Bioresource Center, Institute for Advanced Engineering) ;
  • Lee, Wonbae (Department of Civil & Environmental Engineering, Hanyang University)
  • 박세용 (고등기술연구원 바이오자원순환센터) ;
  • 한성국 (고등기술연구원 바이오자원순환센터) ;
  • 송은혜 (고등기술연구원 바이오자원순환센터) ;
  • 김충곤 (고등기술연구원 바이오자원순환센터) ;
  • 이원배 (한양대학교 건설환경공학과)
  • Received : 2019.07.16
  • Accepted : 2019.08.14
  • Published : 2019.09.30

Abstract

In this study, thermal-alkali pre-treatment (THAP) optimal condition and co-digestion efficiency with THAP of the mixture food waste and sewage sludge were evaluated for improving the performances of co-digestion for mixed food waste and sewage sludge. The optimal condition of THAP was evaluated for solubilization COD, CST(Capillary Suction Time), TTF(Time to Filter), and volatile fatty acids (VFAs) with THAP temperature and NaOH concentration. In addition, the co-digestion of mixed food waste and sewage sludge were evaluated using biochemical methane potential (BMP) test. The optimal THAP reaction temperature and NaOH concentration of food waste and sewage sludge were $140^{\circ}C$ and 60 meq/L to solubilization COD over 20%, CST and TTF under 60sec and VFAs concentration over 12,000 mg-COD/L, respectively. The optimal condition of co-digestion of mixed food waste and sewage sludge equal to THAP condition. Therefore, it was determined that the optimal condition of THAP reaction temperature and NaOH concentration for co-digestion of mixed food waste and sewage sludge were $140^{\circ}C$ and 60 meq/L, respectively.

본 연구에서는 음식물류 폐기물과 하수슬러지의 효과적인 병합 혐기성 처리를 위한 열화학적 가수분해 방법의 최적 조건 평가와, 열화학적 가수분해에 따른 병합 혐기성 소화 효율에 대해 평가 하였다. 열화학적 가수분해는 온도 (80, 100, 120, 140, 160, $180^{\circ}C$)와 NaOH (5, 20, 40, 60, 100 meq/L) 조건에 따른 solubilization COD, CST(Capillary Suction Time), TTF(Time to Filter), volatile fatty acids (VFAs) 등에 대해 평가를 하였으며, 병합 혐기성 소화 효율평가는 biochemical methane potential (BMP) test를 통해 평가하였다. 실험결과 음식물류폐기물과 하수슬러지의 열화학적 가수분해 시 온도 $140^{\circ}C$, NaOH 60 meq/L에서 solubilization COD 20 % 이상, CST와 TTF가 60초 이하, VFAs 농도가 12,000 mg-COD/L 이상으로 최적조건으로 규명되었다. 병합 혐기성 소화 결과도 열화학적 가수분해 조건과 동일한 조건에서 가스발생량이 가장 높았다. 따라서, 음식물류폐기물과 하수슬러지의 효과적인 병합혐기성소화를 위한 열화학적 가수분해 전처리 조건은 온도 $140^{\circ}C$, NaOH 주입농도 60 meq/L라 판단된다.

Keywords

References

  1. Park, S., Lee, H., Lee, W. and Kim, M., "Comparison Methane Production Potential between Granular and Suspended Sludge at Varying Ammonia Concentration", KSCE Journal of Civil Engineering, 20, pp. 1692-1700. (2016). https://doi.org/10.1007/s12205-015-0189-3
  2. Park, J ., Park, S. and Kim, M., "Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge", Environmental Technology, 35, pp. 1133-1139. (2014). https://doi.org/10.1080/09593330.2013.863951
  3. Zhang, C., Su, H., Baeyens, J. and Tan, T., "Reviewing the anaerobic digestion of food waste for biogas production", Renew. Sust Energy Rev., 38, pp. 383-392. (2014). https://doi.org/10.1016/j.rser.2014.05.038
  4. Wan, C., Zhou, Q., Fu, G. and Li, Y., "Semi-continuous anaerobic co-digesiton of thickened waste activated sludge and fat, oil and grease", Waste Management, 31, pp. 1752-1758. (2011). https://doi.org/10.1016/j.wasman.2011.03.025
  5. Li, C., Champagne, P. and Anderson, B., "Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions," Bioresource Technology, 102, pp. 9471-9480. (2011). https://doi.org/10.1016/j.biortech.2011.07.103
  6. Carrere, H., Dumas, C., Battimelli, A., Batstone, D. J., Delegenes, J. P., Steyer, J. P. and Ferrer, I., "Pretreatment methods to improve sludge anaerobic degradability: a review", J. Hazard. Mater, 183, pp. 1-15. (2010). https://doi.org/10.1016/j.jhazmat.2010.06.129
  7. Lix, X., Wang, W., Shi, Zheng, L., Gao, X., Qiao, W. and Zhou, Y., "Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate", Waste Manage, 32(11), pp. 2056-2060. (2012). https://doi.org/10.1016/j.wasman.2012.03.003
  8. Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F. and Lens, P. N. L., "Pretreatment methods to enhance anaerobic digestion of organic solid waste", Appl. Energy, 123, pp. 143-156. (2014). https://doi.org/10.1016/j.apenergy.2014.02.035
  9. Park, S., Yoon, Y., Han, S., Kim, D. and Kim, H., "Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion", Waste Manage, 64, pp. 327-332. (2017). https://doi.org/10.1016/j.wasman.2017.03.004
  10. Long, J., Aziz, T., Reyes, F. and Ducpste, J., "Anaeobic co-digestion of fat, oil, and grease (FOG): A review of gas production and process limitations", Process Safety and Environmental Protection, 90, pp. 231-245. (2012). https://doi.org/10.1016/j.psep.2011.10.001
  11. Shahriari, H., Warith, M., Hamoda, M. and Kennedy, K. J., "Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide", Waste Management. 32, pp. 41-52. (2012). https://doi.org/10.1016/j.wasman.2011.08.012
  12. Li, C., Wang, X., Zhang, G., Yu, G., Lin, J. and Wang, Y., "Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Benchscale research and pilot-scale verification", Water Research, 117, pp. 49-57. (2017). https://doi.org/10.1016/j.watres.2017.03.047
  13. Mo, K., Lee, W. and Kim, M., "Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater", Environmental Technology, 38, pp. 297-304. (2017). https://doi.org/10.1080/09593330.2016.1192222
  14. Mottet, A., Steyer, J. P., Deleris, S., Vedrenne, F., Chauzy, J. and Carrere, H., "Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge", Biochem. Eng. J., 46, pp. 169-175. (2009). https://doi.org/10.1016/j.bej.2009.05.003
  15. Park, S. and Kim, M., "Innovative ammonia stripping with an electrolyzed water system as pretreatment of thermally hydrolyzed wasted sludge for anaerobic digestion", Water Res., 68, pp. 580-588. (2015). https://doi.org/10.1016/j.watres.2014.10.033
  16. APHA, "Standard methods for the examination of water and wastewater", 21st ed., American Public Health Association, Washington DC, USA. (2005).
  17. Kim, H., Han, S., Song, E. and Park, S., "Estimation of the characteristics with hydrothermal carbonisation temperature on poultry slaughterhouse wastes", Waste Management and Research, 36(6), pp. 535-540. (2018). https://doi.org/10.1177/0734242X18772085
  18. Park, S., Han, S., Oh, D., Kim, D., Kim, H. and Yoon, Y., "High-rate anaerobic digestion of thermally hydrolyzed wasted sludge (THWS) with high-strength ammonia", Journal of Material Cycles and Waste Management, 20, pp. 516-524. (2018). https://doi.org/10.1007/s10163-017-0613-5