DOI QR코드

DOI QR Code

Electrochemical Performances of the Sn-Cu Alloy Negative Electrode Materials through Simple Chemical Reduction Method

  • Oh, Ji Seon (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Kim, Duri (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University) ;
  • Chae, Seung Ho (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Oh, Seungjoo (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Yoo, Seong Tae (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Kim, Haebeen (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
  • 투고 : 2019.03.22
  • 심사 : 2019.05.10
  • 발행 : 2019.09.30

초록

Sn-Cu alloy powders were prepared via a simple chemical reduction method for the negative electrode materials in lithiumion batteries. The addition of Cu can suppress the growth of Sn particles during synthetic process. Furthermore, the Cu also acts as a matrix phase against the volume change during cycling. With increasing amount of the Cu, a stable $Cu_6Sn_5$ phase formed in the Sn-Cu alloy and its cycle performance greatly enhanced depending on the Cu content. To promote the generation of the $Cu_6Sn_5$ phase, the synthesis temperature is raised to $60-100^{\circ}C$ from the ambient temperature. The Sn-Cu alloy powders prepared at elevated temperatures showed remarkable cycle performances. The Sn-Cu alloy powder obtained at $60^{\circ}C$ exhibited a significantly high volumetric capacity of over 2,000 mAh/cc at the 50th cycle.

키워드

참고문헌

  1. M. Winter, J.O. Besenhard, Electrochim. Acta, 1999, 45(1-2), 31-50. https://doi.org/10.1016/S0013-4686(99)00191-7
  2. C.-M. Park, J.-H. Kim, H. Kim, H,-J, Sohn, Chem. Soc. Rev., 2010, 39(8), 3115-3141. https://doi.org/10.1039/b919877f
  3. Z. Yi, Z. Wang, Y. Cheng, L. Wang, Energy Environ. Mater., 2018 1(3), 132-147. https://doi.org/10.1002/eem2.12016
  4. C. Lupu, J.G. Mao, J.W. Rabalais, A.M. Guloy, J.W. Richardson, Inorg. Chem., 2003, 42(12), 3765-3771. https://doi.org/10.1021/ic026235o
  5. S. Hong, H. Jo, S.-W. Song, J. Electrochem. Sci. Technol., 2015, 6(4), 116-120. https://doi.org/10.33961/JECST.2015.6.4.116
  6. J.H. Ryu, J.W. Kim, Y.-E. Sung, S.M. Oh, Electrochem. Solid-state Lett., 2004, 7(10), A306-A309. https://doi.org/10.1149/1.1792242
  7. J. Mun, J.H. Ryu, Bull. Korean Chem. Soc., 2016, 37(1), 48-51. https://doi.org/10.1002/bkcs.10620
  8. N.-S. Choi, S.-Y. Ha, Y. Lee, J.Y. Jang, M.-H. Jeong, W.C. Shin, M. Ue, J. Electrochem. Sci. Technol., 2015, 6(2), 35-49. https://doi.org/10.33961/JECST.2015.6.2.35
  9. N. Umirov, D.-H. Seo, K.-N. Jung, H.-Y. Kim, S.-S. Kim, J. Electrochem. Sci. Technol., 2019, 10(1), 82-88. https://doi.org/10.5229/JECST.2019.10.1.82
  10. J.S. Kim, N. Umirov, H.-Y. Kim, S.-S. Kim, J. Electrochem. Sci. Technol., 2018, 9(1), 51-59. https://doi.org/10.33961/JECST.2018.9.1.51
  11. K.D. Kepler, J.T. Vaughey. M.M. Thackeray, J. Power Sources, 1999, 81, 383-387. https://doi.org/10.1016/S0378-7753(99)00111-1
  12. H.-C. Shin, M. Liu, Adv. Funct. Mater., 2005, 15(4), 582-586. https://doi.org/10.1002/adfm.200305165
  13. W. Pu, X. He, J. Ren, C. Wan, C. Jiang, Electrochim. Acta, 2005, 50(20), 4140-4145. https://doi.org/10.1016/j.electacta.2005.01.041
  14. M.G. Kim, S. Sim, J. Cho, Adv. Mater., 2010, 22(45), 5154-5158. https://doi.org/10.1002/adma.201002480
  15. S. Park, J.H. Ryu, S.M. Oh, J. Electrochem. Soc., 2011, 158(5), A498-A503. https://doi.org/10.1149/1.3561424
  16. X.Y. Fan, F.S. Ke, G.Z. Wei, L. Huang, S.G. Sun, Electrochem. Solid-State Lett., 2008, 11(11), A195-A197. https://doi.org/10.1149/1.2972991
  17. L. Trahey, J.T. Vaughey, H.H. Kung, M.M. Thackeray, J. Electrochem. Soc., 2009, 156(5), A385-A389. https://doi.org/10.1149/1.3094033
  18. H.S. Hwang, T. Yoon, J. Jang, J.J. Kim, J.H. Ryu, S.M. Oh, J. Alloys Compd., 2017, 692, 583-588. https://doi.org/10.1016/j.jallcom.2016.09.073
  19. Z. Wang, Z. Shan, J. Tian, W. Huang, D. Luo, X. Zhu, S. Meng, J. Mater. Sci., 2017, 52(10), 6020-6033. https://doi.org/10.1007/s10853-017-0841-z
  20. L. Su, J. Fu, P. Zhang, L. Wang, Y. Wang, M. Ren, RSC Adv., 2017, 7(45), 28399-28406. https://doi.org/10.1039/C7RA02214J
  21. N.-Y Kim, G. Lee, J. Choi, Chem. Eur. J., 2018, 24(71), 19045-19052. https://doi.org/10.1002/chem.201804313