References
- M.GHASEMI KAMALVAND, KH. D. IKRAMOV, A method of congruent type for linear systems with conjugate-normal coefficient matrices. Computational mathematic and physics, Vol. 49, No. 2, 203-216, 2009. https://doi.org/10.1134/S0965542509020018
- R. BEVILACQUA, G. M. DEL CORSO, A condensed representation of almost normal matrices. Linear algebra and its applications, 438, 4408-4425, 2013. https://doi.org/10.1016/j.laa.2013.02.004
- R. BEVILACQUA, G. M. DEL CORSO, L. GEMIGNANI, Block tridiagonal reduction of perturbed normal and rank structured matrices. Linear algebra and its applications,1-13, 2013.
- L. ELSNER, KH. D. IKRAMOV, On a condensed form for normal matrices under finite sequences of elementary unitary similarities. Linear algebra and its applications, 254, 79-98, 1997. https://doi.org/10.1016/S0024-3795(96)00526-5
- A. BUNSE-GERSTNER, R. STOVER, On a conjugate-type mathod for solving complex symmetric linear systems. Linear algebra Appl.287, 105-123, 1999. https://doi.org/10.1016/S0024-3795(98)10091-5
- M.GHASEMI KAMALVAND, KH. D. IKRAMOV, Low-rank perturbations of normal and conjugate-normal matrices and their condensed forms under unitary similarities and congruences. Computational mathematic and physics, Vol. 33, No. 3, 109-116, 2009.
- M. DANA, A. G. ZYKOV, KH.D. IKRAMOV, A minimal residual method for a special class of the linear systems with normal coefficient matrices. - Comput. Math. Math. Phys., 45, 1854-1863, 2005.
- R.A. HORN AND C.R. JOHNSON, Matrix Analysis. Cambridge University Press, Cambridge, 1985.
- W. KAHAN, Spectra of nearly Hermitian matrices. Proc. Amer. Math. Soc. 48, 11-17, 1975. https://doi.org/10.1090/S0002-9939-1975-0369394-5
- J. SUN, On the variation of the spectrum of a normal matrix. Linear algebra Appl, 246, 215-223, 1996. https://doi.org/10.1016/0024-3795(94)00354-8
- I. IPSEN, Departure from normality and eigenvalue perturbation bounds. Technical Report TR03-28, NC State University, 2003.
- R. VANDEBRIL, G.M. DEL CORSO, An implicit multishift qr-algorithm for Hermitian plus low rank matrices. SIAM J. Sci. Comput. 16, 2190-2212, 2010. https://doi.org/10.1137/090754522
- L.G.Y. EIDELMAN, I.C. GOHBERG, Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbation. Numer. orithms 47, 253-273, 2008.
- M. PUTINAR, Linear analysis of quadrature domains. III. J. Math. Anal. Appl, 239(1):101-117, 1999. https://doi.org/10.1006/jmaa.1999.6556