References
- S. Momani, Analytical and approximate solutions of the space-and time fractional telegraph equations, Applied Mathematics and Computation, 170 (2005), 1126-34. https://doi.org/10.1016/j.amc.2005.01.009
- I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999.
- K. P. Ghadle and F. Khan, Solution of FPDE in Fluid Mechanics by ADM, VIM and NIM, American Journal of Mathematical and Computer Modelling, 2 (2017), 13-23.
- A. A. Hamoud and K. P. Ghadle, On the Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations by Variational Iteration Method, International Journal of Advanced Scientific and Technical Research, 3 (2016), 45-51.
- A. A. Hamoud, A. A Dhurgham and K. P. Ghadle, A Study of some Iterative Methods for solving Fuzzy Volterra-Fredholm Integral Equation, Indonesian Journal of Electrical Engineering and Computer Science, 11 (2018), 1228-1235. https://doi.org/10.11591/ijeecs.v11.i3.pp1228-1235
- A. A. Hamoud and K. P. Ghadle, Existence and Uniqueness of the solution for Volterra-Fredholm Integro-Differential Equations, Journal of Siberian Fedreral University Mathematics and Physics, 11 (2018), 692-701. https://doi.org/10.17516/1997-1397-2018-11-6-692-701
- A. A. Hamoud, K. P. Ghadle, M. Sh. Bani Issa and Giniswamy. Existence and Uniqueness theorems for Fractional Volterra-Fredholm Integro-Differential Equations, International Journal of Applied Mathematics, 31 (2018), 333-348.
- A. A. Hamoud and K. P. Ghadle, Homotopy Analysis Method for the first order Fuzzy Volterra-Fredholm Integro-Differential Equations, Indonesian Journal of Electrical Engineering and Computer Science, 11 (2018), 857-867. https://doi.org/10.11591/ijeecs.v11.i3.pp857-867
- A. A. Hamoud, and K. P. Ghadle, Modified Laplace Decomposition Method for Fractional Volterra-Fredholm Integro-Differential Equations, Journal of Mathematical Modeling, 6 (2018), 91-104.
- A. A. Hamoud and K. P. Ghadle, Modified Adomian Decomposition Method for Solving Fuzzy Volterra-Fredholm Integral Equations, Journal of the Indian Mathematical Society, 85 (2018), 53-69. https://doi.org/10.18311/jims/2018/16260
- S. Fomin, V. Chugunov and T. Hashida, Mathematical Modeling of Anomalous Diffusion in Porous Medium, Fractional Differential Calculus, 1 (2011), 1-28.
- S. Momani, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Elsevier, Physics Letters A, 355 (2006), 271-279. https://doi.org/10.1016/j.physleta.2006.02.048
- K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.
- K. B. Oldham, and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
- M. Caputo, Linear models of dissipation whose Q is almost frequency indepedent-part II, Geophysical Journal International, 13 (1967), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
- I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5 (2002), 367-386.
- Z. Odibat, and S. Momani, The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers and Mathematics with Applications, 58 (2009), 2199-2208. https://doi.org/10.1016/j.camwa.2009.03.009
- A. A.Hemeda, Solution of fractional partial differential equations in fluid mechanics by extension of some iterative method, Abstract and Applied Analysis, 2013 (2013), 1-9.