References
- Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15: 11-20 https://doi.org/10.1038/nrgastro.2017.109
- Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, Fujii H, Wu Y, Kam LY, Ji F, Li X, Chien N, Wei M, Ogawa E, Zhao C, Wu X, Stave CD, Henry L, Barnett S, Takahashi H, Furusyo N, Eguchi Y, Hsu YC, Lee TY, Ren W, Qin C, Jun DW, Toyoda H, Wong VW, Cheung R, Zhu Q, Nguyen MH (2019) Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 4: 389-398 https://doi.org/10.1016/S2468-1253(19)30039-1
- Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65: 1038-1048 https://doi.org/10.1016/j.metabol.2015.12.012
- Katsiki N, Mikhailidis DP, Mantzoros CS (2016) Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism 65: 1109-1123 https://doi.org/10.1016/j.metabol.2016.05.003
- Lallukka S, Yki-Jarvinen H (2016) Non-alcoholic fatty liver disease and risk of type 2 diabetes. Best Pract Res Clin Endocrinol Metab 30: 385-395 https://doi.org/10.1016/j.beem.2016.06.006
- Doulberis M, Kotronis G, Gialamprinou D, Kountouras J, Katsinelos P (2017) Non-alcoholic fatty liver disease: An update with special focus on the role of gut microbiota. Metabolism 71: 182-197 https://doi.org/10.1016/j.metabol.2017.03.013
- Mokhtari Z, Gibson DL, Hekmatdoost A (2017) Nonalcoholic Fatty Liver Disease, the Gut Microbiome, and Diet. Adv Nutr 8: 240-252 https://doi.org/10.3945/an.116.013151
- Ivan J, Major E, Sipos A, Kovacs K, Horvath D, Tamas I, Bay P, Dombradi V, Lontay B (2017) The Short-Chain Fatty Acid Propionate Inhibits Adipogenic Differentiation of Human Chorion-Derived Mesenchymal Stem Cells Through the Free Fatty Acid Receptor 2. Stem Cells Dev 26: 1724-1733 https://doi.org/10.1089/scd.2017.0035
- Yu H, Li R, Huang H, Yao R, Shen S (2018) Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism. Lipids 53: 77-84 https://doi.org/10.1002/lipd.12005
- Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R (2017) Targeting the gut-liver axis in liver disease. J Hepatol 67: 1084-1103 https://doi.org/10.1016/j.jhep.2017.05.007
- Zhong S, Fan Y, Yan Q, Fan X, Wu B, Han Y, Zhang Y, Chen Y, Zhang H, Niu J (2017) The therapeutic effect of silymarin in the treatment of nonalcoholic fatty disease: A meta-analysis (PRISMA) of randomized control trials. Medicine (Baltimore) 96: e9061 https://doi.org/10.1097/MD.0000000000009061
- Zheng H, Zhao J, Zheng Y, Wu J, Liu Y, Peng J, Hong Z (2014) Protective effects and mechanisms of total alkaloids of Rubus alceaefolius Poir on nonalcoholic fatty liver disease in rats. Mol Med Rep 10: 1758-1764 https://doi.org/10.3892/mmr.2014.2403
- Wang Y, Zhao L, Wang D, Huo Y, Ji B (2016) Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: antioxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro. J Sci Food Agric 96: 2494-2503 https://doi.org/10.1002/jsfa.7370
- Zhao J, Zheng H, Liu Y, Lin J, Zhong X, Xu W, Hong Z, Peng J (2013) Anti-inflammatory effects of total alkaloids from Rubus alceifolius Poir [corrected]. on non-alcoholic fatty liver disease through regulation of the NF-kappaB pathway. Int J Mol Med 31: 931-937 https://doi.org/10.3892/ijmm.2013.1281
- Lopez-Terrada D, Cheung SW, Finegold MJ, Knowles BB (2009) Hep G2 is a hepatoblastoma-derived cell line. Hum Pathol 40: 1512-1515
- Park S, Kim DS, Wu X, Q JY (2018) Mulberry and dandelion water extracts prevent alcohol-induced steatosis with alleviating gut microbiome dysbiosis. Exp Biol Med (Maywood) 243: 882-894 https://doi.org/10.1177/1535370218789068
- Moon NR, Kang S, Park S (2018) Consumption of ellagic acid and dihydromyricetin synergistically protects against UV-B induced photoaging, possibly by activating both TGF-beta1 and wnt signaling pathways. J Photochem Photobiol B 178: 92-100 https://doi.org/10.1016/j.jphotobiol.2017.11.004
- Carvalho MMF, Reis LLT, Lopes JMM, Lage NN, Guerra J, Zago HP, Bonomo LF, Pereira RR, Lima WG, Silva ME, Pedrosa ML (2018) Acai improves non-alcoholic fatty liver disease (NAFLD) induced by fructose. Nutr Hosp 35: 318-325
- Ren T, Huang C, Cheng M (2014) Dietary blueberry and bifidobacteria attenuate nonalcoholic fatty liver disease in rats by affecting SIRT1-mediated signaling pathway. Oxid Med Cell Longev 2014: 469059 https://doi.org/10.1155/2014/469059
- Bhaswant M, Fanning K, Netzel M, Mathai ML, Panchal SK, Brown L (2015) Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacol Res 102: 208-217 https://doi.org/10.1016/j.phrs.2015.10.006
- Pei L, Wan T, Wang S, Ye M, Qiu Y, Jiang R, Pang N, Huang Y, Zhou Y, Jiang X, Ling W, Zhang Z, Yang L (2018) Cyanidin-3-O-beta-glucoside regulates the activation and the secretion of adipokines from brown adipose tissue and alleviates diet induced fatty liver. Biomed Pharmacother 105: 625-632 https://doi.org/10.1016/j.biopha.2018.06.018
- You Y, Yuan X, Liu X, Liang C, Meng M, Huang Y, Han X, Guo J, Guo Y, Ren C, Zhang Q, Sun X, Ma T, Liu G, Jin W, Huang W, Zhan J (2017) Cyanidin-3-glucoside increases whole body energy metabolism by upregulating brown adipose tissue mitochondrial function. Mol Nutr Food Res 61
- Polce SA, Burke C, Franca LM, Kramer B, de Andrade Paes AM, Carrillo-Sepulveda MA (2018) Ellagic Acid Alleviates Hepatic Oxidative Stress and Insulin Resistance in Diabetic Female Rats. Nutrients 10
- Panchal SK, Ward L, Brown L (2013) Ellagic acid attenuates highcarbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur J Nutr 52: 559-568 https://doi.org/10.1007/s00394-012-0358-9
- Koukias N, Buzzetti E, Tsochatzis EA (2017) Intestinal hormones, gut microbiota and non-alcoholic fatty liver disease. Minerva Endocrinol 42:184-194
- Cui Y, Wang Q, Chang R, Zhou X, Xu C (2019) Intestinal Barrier Function-Non-alcoholic Fatty Liver Disease Interactions and Possible Role of Gut Microbiota. J Agric Food Chem 67: 2754-2762 https://doi.org/10.1021/acs.jafc.9b00080
- Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T (2013) Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One 8: e63388 https://doi.org/10.1371/journal.pone.0063388
- Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534: 213-217 https://doi.org/10.1038/nature18309
- Chen L, Cao H, Xiao J (2018) 2-Polyphenols: Absorption, bioavailability, and metabolomics. In: Galanakis CM (ed) Polyphenols: Properties, Recovery, and Applications. Woodhead Publishing, pp 45-67
- Frolinger T, Sims S, Smith C, Wang J, Cheng H, Faith J, Ho L, Hao K, Pasinetti GM (2019) The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids. Sci Rep 9: 3546 https://doi.org/10.1038/s41598-019-39994-6
- Gowd V, Bao T, Wang L, Huang Y, Chen S, Zheng X, Cui S, Chen W (2018) Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chem 269: 618-627 https://doi.org/10.1016/j.foodchem.2018.07.020
Cited by
- Mixture of blackberry leaf and fruit extracts alleviates non-alcoholic steatosis, enhances intestinal integrity, and increases Lactobacillus and Akkermansia in rats vol.244, pp.18, 2019, https://doi.org/10.1177/1535370219889319