DOI QR코드

DOI QR Code

Effect of Prostaglandin F2 Alpha on E-cadherin, N-cadherin and Cell Adhesion in Ovarian Luteal Theca Cells

난소의 황체협막세포에서 E-cadherin, N-cadherin과 세포부착에 미치는 Prostaglandin F2 Alpha의 영향

  • Lee, Sang-Hee (Discipline of ICT, School of Technology, Environments and Design, University of Tasmania) ;
  • Jung, Bae Dong (College of Veterinary Medicine, Kangwon National University) ;
  • Lee, Seunghyung (College of Animal Life Sciences, Kangwon National University)
  • 이상희 (타즈매니아대학교 기술환경디자인대학 ICT학과) ;
  • 정배동 (강원대학교 수의과대학) ;
  • 이승형 (강원대학교 동물생명과학대학)
  • Received : 2019.07.19
  • Accepted : 2019.08.21
  • Published : 2019.09.30

Abstract

Cadherins are essential transmembrane proteins that promote cell-cell adhesion and maintain the corpus luteum structure in the ovary. This study examined the influence of prostaglandin F2 alpha ($PGF2{\alpha}$) on E-cadherin, N-cadherin, and adhesion in luteal theca cells (LTCs). The luteal cells were isolated from the mid-phase corpus luteum, and the LTCs were cultured separately from the luteal heterogeneous cells according to the morphology of the mesenchymal cells and to determine if steroidogenic and endothelial cells of LTCs, 3beta-hydroxysteroid dehydrogenase ($3{\beta}$-HSD), and vascular endothelial growth factor receptor 2 (VEGFR2) mRNA were used. The LTCs were then incubated in the culture medium supplemented with 0.01, 0.1, and 1.0 mM $PGF2{\alpha}$ for 24 h, and the E-cadherin and N-cadherin proteins in the LTCs were detected by confocal laser scanning microscopy. The results revealed $3{\beta}$-HSD mRNA expression in the LTC but no VEGF2R mRNA expression. The E-cadherin and N-cadherin proteins of the LTCs were damaged in the 0.01, 0.1, and 1.0 mM $PGF2{\alpha}$ treatment groups, and the expression of the N-cadherin protein was reduced significantly in 0.01 mM $PGF2{\alpha}$ compared to the 0 mM $PGF2{\alpha}$ treatment groups (P<0.05). In addition, the number of attached LTCs were significantly lower in the 0.01 mM $PGF2{\alpha}$ treatment group than in the 0 mM $PGF2{\alpha}$ treatment group (P<0.05). In conclusion, $PGF2{\alpha}$ affected the disruption of cadherin proteins and cell adhesion in LTCs. These results may help better understand the cadherin and adhesion mechanism during corpus luteum regression in the ovary.

Cadherin은 원형질막에 존재하며 세포-세포 결합에 관여하며, 황체 구조 유지에 필수적인 단백질이다. 본 연구에서는 prostaglandin F2 alpha ($PGF2{\alpha}$)가 황체의 협막세포(luteal theca cells, LTCs)의 E-cadherin, N-cadherin 및 세포-세포부착에 미치는 영향에 대해서 수행하였다. 황체세포는 소의 황체중기 조직으로부터 분리하였으며, 황체세포 중에서 mesenchymal 세포 형태학적 특성을 가지는 세포만을 분리하여 LTCs로 판단하였다. 이 후 steroidogenic 기능 및 혈관세포 유무를 판단하기 위해 $3{\beta}$-HSD 및 VEGF2R mRNA 발현을 확인하였으며, E-cadherin 및 N-cadherin mRNA를 사용하여 LTCs 내 cadherin의 존재여부를 판단하였다. 또한 0, $10^{-5}$, $10^{-4}$$10^{-3}M$ $PGF2{\alpha}$를 24시간 동안 처리하여 LTCs의 E- 및 N-cadherin 단백질을 관찰한 후 세포-세포 접착 실험을 실시하였다. 그 결과, LTCs에서 $3{\beta}$-HSD mRNA가 발현되었지만, VEGFR2 mRNA는 발현되지 않았으며, E-cadherin 및 N-cadherin mRNA 모두 발현되는 것을 확인하였다. 또한 E-및 N-cadherin 단백질은 $10^{-5}$, $10^{-4}$$10^{-3}M$ $PGF2{\alpha}$를 처리한 LTCs에서 응집되어 발현되는 것을 확인하였으며, $PGF2{\alpha}$에 의해 LTCs의 세포부착 효율이 유의적으로 감소된 것을 확인하였다. 결론적으로 $PGF2{\alpha}$는 LTCs의 E- 및 N-cadherin을 붕괴시켜 세포부착을 감소시켰고, 이러한 결과는 황체퇴행의 새로운 원인을 밝혀 내기 위한 cadherin과 세포부착의 역할을 이해하는데 중요한 자료로 활용될 것으로 판단된다.

Keywords

References

  1. Skarzynski D, Piotrowska-Tomala K, Lukasik K, Galvao A, Farberov S, Zalman Y, et al. Growth and regression in bovine corpora lutea: regulation by local survival and death pathways. Reprod Domest Anim. 2013;48:25-37. https://doi.org/10.1111/rda.12203.
  2. O'shea J, Rodgers R, D'occhio M. Cellular composition of the cyclic corpus luteum of the cow. Reproduction. 1989;85:483-487. https://doi.org/10.1530/jrf.0.0850483.
  3. Berisha B, Bridger P, Toth A, Kliem H, Meyer H, Schams D, et al. Expression and localization of gap junctional connexins 26 and 43 in bovine periovulatory follicles and in corpus luteum during different functional stages of oestrous cycle and pregnancy. Reprod Domest Anim. 2009;44:295-302. https://doi.org/10.1111/j.1439-0531.2008.01068.x.
  4. Groten T, Fraser H, Duncan W, Konrad R, Kreienberg R, Wulff C. Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after HCG treatment. Hum Reprod. 2006;21:3096-3102. https://doi.org/10.1093/humrep/del286.
  5. Spanel-Borowski K. Diversity of ultrastructure in different phenotypes of cultured microvessel endothelial cells isolated from bovine corpus luteum. Cell Tissue Res. 1991;266:37-49. https://doi.org/10.1007/bf00678709.
  6. Sundfeldt K, Piontkewitz Y, Billig H, Hedin L. E-cadherin-catenin complex in the rat ovary: cell-specific expression during folliculogenesis and luteal formation. J Reprod Fertil. 2000;118:375-386. https://doi.org/10.1530/jrf.0.1180375.
  7. Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28:117-149. https://doi.org/10.1007/978-0-387-88186-7_26.
  8. Alila H, Corradino R, Hansel, W. A comparison of the effects of cyclooxygenase prostanoids on progresterone production by small and large bovine luteal cells. Prostaglandins. 1988a; 36:259-270. https://doi.org/10.1016/0090-6980(88)90312-7.
  9. Alila H, Dowd J, Corradino R, Harris W, Hansel W. Control of progesterone production in small and large bovine luteal cells separated by flow cytometry. Reproduction. 1988b;82:645-655. https://doi.org/10.1530/jrf.0.0820645.
  10. Brannian JD, Stouffer RL, Shiigi SM, Hoyer PB. Isolation of ovine luteal cell subpopulations by flow cytometry. Biol Reprod. 1993;48:495-502. https://doi.org/10.1095/biolreprod48.3.495.
  11. Spitschak M, Vanselow J. Bovine large luteal cells show increasing de novo DNA methylation of the main ovarian CYP19A1 promoter P2. Gen Comp Endocrinol. 2012;178:37-45. https://doi.org/10.1016/j.ygcen.2012.04.001.
  12. Tajima K, Orisaka M, Mori T, Kotsuji F. Ovarian theca cells in follicular function. Reprod Biomed Online. 2007;15:591-609. https://doi.org/10.1016/s1472-6483(10)60392-6.
  13. Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U. Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol. 2007;8:562. https://doi.org/10.1038/nrm2197.
  14. Maroni D, Davis JS. TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum. J Cell Sci. 2011;124:2501-2510. https://doi.org/10.1242/jcs.084558.
  15. Sheetz MP. Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol. 2001;2:392-396. https://doi.org/10.1093/biolreprod/83.s1.228.
  16. Shirasuna K, Watanabe S, Nagai K, Sasahara K, Shimizu T, Ricken AM, et al. Expression of mRNA for cell adhesion molecules in the bovine corpus luteum during the estrous cycle and PGF2alpha-induced luteolysis. J Reprod Dev. 2007;53:1319-1328. https://doi.org/10.1262/jrd.19082.
  17. Abera A, Sales K, Catalano R, Katz A, Jabbour H. EP2 receptor mediated cAMP release is augmented by $PGF2{\alpha}$ activation of the FP receptor via the calcium-calmodulin pathway. Cell Signal. 2010;22:71-79. https://doi.org/10.1016/j.cellsig.2009.09.012.
  18. McCracken JA, Custer EE, Lamsa JC. Luteolysis: a neuroendocrine-mediated event. Physiol Rev. 1999;79:263-323. https://doi.org/10.1152/physrev.1999.79.2.263.
  19. Yamagishi-Kimura R, Honjo M, Aihara M. Contribution of prostanoid FP receptor and prostaglandins in transient inflammatory ocular hypertension. Sci Rep. 2018;8:11098. https://doi.org/10.1038/s41598-018-29273-1.
  20. Yadav VK, Sudhagar RR, Medhamurthy R. Apoptosis during spontaneous and prostaglandin $F2{\alpha}$-induced luteal regression in the Buffalo Cow (Bubalus bubalis): involvementof mitogenactivated protein kinases. Biol Reprod. 2002;67:752-759. https://doi.org/10.1095/biolreprod.102.004077.
  21. Yadav VK, Lakshmi G, Medhamurthy R. Prostaglandin $F2{\alpha}$-mediated activation of apoptotic signaling cascades in the corpus luteum during apoptosis. J Biol Chem. 2005;280:10357-10367. https://doi.org/10.1074/jbc.m409596200.
  22. Okuda K, Sakumoto R. Multiple roles of TNF super family members in corpus luteum function. Reprod Biol Endocrinol. 2003;1:95. https://doi.org/10.1186/1477-7827-1-95.
  23. Desouza M, Gunning PW, Stehn JR. The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture. 2012;2:75-87. https://doi.org/10.4161/bioa.20975.
  24. Korzekwa A, Jaroszewski JJ, Bogacki M, Deptula KM, Maslanka TS, Acosta TJ, et al. Effects of prostaglandin $F2{\alpha}$ and nitric oxide on the secretory function of bovine luteal cells. J Reprod Dev. 2004;50:411-417. https://doi.org/10.1262/jrd.50.411.
  25. Korzekwa A, Jaroszewski J, Woclawek-Potocka I, Bah M, Skarzynski D. Luteolytic effect of prostaglandin $F2{\alpha}$ on bovine corpus luteum depends on cell composition and contact. Reprod Domest Anim. 2008;43:464-472. https://doi.org/10.1111/j.1439-0531.2007.00936.x.
  26. Kim M, Lee SH, Lee S, Kim GY. Expression of fas and TNFR1 in the luteal cell types isolated from the ovarian corpus luteum. Biomed Sci Lett. 2019;25:107-112. https://doi.org/10.15616/BSL.2019.25.1.107.
  27. Yuan W, Giudice LC. Programmed cell death in human ovary is a function of follicle and corpus luteum status. J Clin Endocrinol Metab. 1997;82:3148-3155. https://doi.org/10.1210/jc.82.9.3148.
  28. Skarzynski DJ, Jaroszewski JJ, Okuda K. Role of tumor necrosis $factor-{\alpha}$ and nitric oxide in luteolysis in cattle. Domest Anim Endocrinol. 2005;29:340-346. https://doi.org/10.1016/j.domaniend.2005.02.005.
  29. Korzekwa A, Lukasik K, Pilawski W, Piotrowska-Tomala K, Jaroszewski J, Yoshioka S, et al. Influence of prostaglandin $F2{\alpha}$ analogues on the secretory function of bovine luteal cells and ovarian arterial contractility in vitro. Vet J. 2014;199:131-137. https://doi.org/10.1016/j.tvjl.2013.09.021.
  30. Khan-Dawood FS, Yang J, Ozigi AA, Yusoff Dawood M. Immunocytochemical localization and expression of E-cadherin, ${\beta}$-catenin, and plakoglobin in the baboon (Papio anubis) corpus luteum. Biol Reprod. 1996;55:246-253. https://doi.org/10.1095/biolreprod55.2.246.
  31. Machell N, Farookhi R. E-and N-cadherin expression and distribution during luteinization in the rat ovary. Reproduction. 2003;125:791-800. https://doi.org/10.1530/rep.0.1250791.
  32. Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol. 2011;192:907-917. https://doi.org/10.1083/jcb.201009141.
  33. Grzesiak M, Mitan A, Janik ME, Knapczyk-Stwora K, Slomczynska M. Flutamide alters ${\beta}$-catenin expression and distribution, and its interactions with E-cadherin in the porcine corpus luteum of mid- and late pregnancy. Histol Histopathol. 2015; 30:1341-1352. https://doi.org/10.1016/j.repbio.2012.11.053.
  34. Mui KL, Chen CS, Assoian RK. The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J Cell Sci. 2016;129:1093-1100. https://doi.org/10.1242/jcs.183699.
  35. Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Changes in the expression of prostaglandin family members in bovine corpus luteum during the estrous cycle and pregnancy. Mol Reprod Dev. 2018;7:622-634. https://doi.org/10.1002/mrd.22999.
  36. Po JW, Roohullah A, Lynch D, DeFazio A, Harrison M, Harnett PR, et al. Improved ovarian cancer EMT-CTC isolation by immunomagnetic targeting of epithelial EpCAM and mesenchymal N-cadherin. J Circ Biomarkers. 2018;7:1-10. https://doi.org/10.1177/1849454418782617.
  37. Yi Y, Cheng JC, Klausen C, Leung PCK. Activin A promotes ovarian cancer cell migration by suppressing E-cadherin expression. Exp Cell Res. In pressed. https://doi.org/10.1016/j.yexcr.2019.06.016.