DOI QR코드

DOI QR Code

Water Sorption/Desorption Kinetics and Convective Drying of Eucalyptus globulus Wood

  • AMER, Mahyoub (Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of Sciences, Mohammed V University in Rabat) ;
  • KABOUCHI, Bousselham (Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of Sciences, Mohammed V University in Rabat) ;
  • El ALAMI, Salah (Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of Sciences, Mohammed V University in Rabat) ;
  • AZIZE, Brahim (Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of Sciences, Mohammed V University in Rabat) ;
  • RAHOUTI, Mohamed (Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat) ;
  • FAMIRI, Abderrahim (Physics Mechanics of Wood Laboratory, Research Centre of Forestry in Rabat) ;
  • FIDAH, Abdelwahed (Physics Mechanics of Wood Laboratory, Research Centre of Forestry in Rabat)
  • Received : 2019.04.05
  • Accepted : 2019.08.10
  • Published : 2019.09.25

Abstract

Radial and tangential water diffusion in Eucalyptus globulus wood was investigated using three mature trees from a forest in Khemis Sahel (North Morocco). Absorption and desorption kinetics experiments were conducted at ambient temperature ($25^{\circ}C$) and $30^{\circ}C$, respectively, and a relative humidity of 60%. The diffusion coefficients in the two directions were determined under imposed hygrothermal conditions; they were greater in the radial direction for the absorption as well as desorption processes. Convective drying under load, preceded by reconditioning and followed up by balancing, revealed the drying conditions that corresponded to the appropriate drying schedules for E. globulus wood. This was verified by measuring the cracks and bowsbefore and after drying of boards.

Keywords

References

  1. Amer, M., Kabouchi, B., Rahouti, M., Famiri, A., Fidah, A. 2017. Determination of growth stresses indicator, moisture profiles and basic density of clonal eucalyptus wood. Journal of the Indian Academy Wood Science 14(1): 91-98. https://doi.org/10.1007/s13196-017-0192-z
  2. Baronas, R., Ivanauskas, F., Juodeikien, L., Kajalavicius, A. 2001. Modelling of moisture movement in wood during outdoor storage. Nonlinear Analysis: Modelling and Control 6(2): 3-14.
  3. Batista, D.C., Klitzke, R.J., Da Rocha, M.P., Bolzon de Muniz, G.I., Batista, T.R. 2013. Volume loss as a tool to assess kiln drying of Eucalyptus Wood. Floresta e Ambiente 20(2): 250-256 https://doi.org/10.4322/floram.2013.017
  4. Bennani, L., Elkouali, M., Talbi, M., Ainane, T. 2017. Modelling the absorption process of water in wood in the transient regime. International Journal of Chemical Science 15(2): 137-147.
  5. Chang, Y.S., Shin, H.K., Kim, S., Han, Y., Kim, M.J., Eom, C.D., Lee, Y.G., Shim, K.B. 2017. Evaluation of drying properties and yields of domestic Quercus species for enhancing utilization. Journal of the Korean Wood Science and Technology 45(5): 622-628. https://doi.org/10.5658/WOOD.2017.45.5.622
  6. Engelund, E.T., Thygesen, L.G., Svensson, S., Hill, C.A.S. 2013. A critical discussion of the physics of wood-water interactions. Wood Science and Technology 47: 141-161. https://doi.org/10.1007/s00226-012-0514-7
  7. Famiri, A., Kabouchi, B., Hakam, A., Gril, J. 2001. Sawing and growth stresses in green wood of Eucalyptus grandis & E. gomphocephala. Forest Science, Bulgaria, 1/2: 45-50.
  8. Franke, B., Franke, S., Schiere, M., Muller, A. 2016. Moisture diffusion in wood-Experimental and numerical investigations. Vienna-Austria. WCTE World Conference on Timber Engineering. 22-25 August (2016), pp. 1-8.
  9. Ghazil, A. 2010. Etude de la migration des fluides dans le bois. PhD. Thesis, Universite Henri Poincare, Nancy 1, France.
  10. Hakam, A., Dikrallah, A., Kabouchi, B., Famiri, A., Walia-Allah, M., El Abid, A. 2005. Eucalyptus wood drying. Journal of Physics IV France 123: 327-330. https://doi.org/10.1051/jp4:2005123059
  11. Hakam, A., Dikrallah, A., Walia-Allah, M., Famiri, A., Kabouchi, B., El Abid, A., Fechtal, M. 2003. Controle et quantification de la degradation mecanique du bois pendant le sechage. Cas d'eucalyptus. Physical Chemistry News 13: 110-114.
  12. Houngan, C.A., Awanto, C., Houndedako, S., Anjorin, M., Vianou, A. 2015. Mass diffusivity determination of Teak wood (Tectona grandis) used as building material. Int. Conference on Computational Heat and Mass Transfer, Procedia Engineering 127: 201-207.
  13. Jannot, Y., Kanmogne, A., Talla, A., Monkam, L. 2006. Experimental determination and modelling of water desorption isotherms of tropical woods: afzelia, ebony, iroko, moabi and obeche. Holz als Roh. und Werkstoff, 64: 121-124. https://doi.org/10.1007/s00107-005-0051-2
  14. Kang, C.W., Kang, H.Y. 2018. Development of a Kiln dry schedule for Lindera erythrocarpa grown in Hongsung, Chungnam Province, Korea. Journal of the Korean Wood Science Technology 46(1): 10-16. https://doi.org/10.5658/WOOD.2018.46.1.10
  15. Kantay, R., Unsal, O., Korkut, S. 2002. Drying problems of fast growing tree species: Evaluation of Maritime pine (Pinus pinaster Ait) and Eucalyptus (Eucalyptus camaldulensis Dehn) wood. Izmit-Turkey, Conference, Meeting Management of Fast Growing Plantations (IUFRO 2002), pp 208-212.
  16. Khouya, A. 2008. Contribution aux etudes experimentale et numerique d'un processus de sechage du bois. PhD. Thesis, Universite Abdelmalek Essaadi, Tetouan, Morocco.
  17. Kim, H., Han, Y., Park, Y., Yang, S.Y., Chung, H., Eom, C.D., Lee, H.M., Yeo, H. 2017. Finite difference evaluation of moisture profile in Boxedheart large-cross-section Square timber of Pinus densiflora during high temperature drying. Journal of the Korean Wood Science and Technology 45(6): 762-771. https://doi.org/10.5658/WOOD.2017.45.6.762
  18. Kouchade, A.C. 2004. Determination en routine de la diffusivite massique dans le bois par methode inverse a partir de la mesure electrique en regime transitoire. PhD. Thesis, Ecole Nationale du genie Rural des Eaux et des Forets, Nancy, France.
  19. Lee, J.M., Lee, W.H. 2018. Dimensional stabilization through heat treatment of thermally compressed wood of Korean Pine. Journal of the Korean Wood Science and Technology 46(5): 471-485. https://doi.org/10.5658/WOOD.2018.46.5.471
  20. Maziri, A., El Ghorba, M., Chergui, M., Famiri, A., Ziani, M., Kabouchi, B. 2010. Etude des contraintes de croissance chez l'Eucalyptus camaldulensis et leur relation avec les fentes d'abattage. Physical Chemistry News 53: 15-21.
  21. Noorolahi, S., Khazaei, J., Jafari, S. 2008. Modeling Cyclic water absorption and desorption characteristics of three varieties of wood. Tokyo, Japan, World conference on agricultural information and IT. 24-27 August (2008), pp 13-22.
  22. Okoh, E.T. 2014. Water absorption properties of some tropical timber species. Journal of Energy and Natural Resources 3(2): 20-24. https://doi.org/10.11648/j.jenr.20140302.12
  23. Pang S.J., Jeong G.Y. 2019. Effects of density, temperature, size, grain angle of wood materials on nondestructive moisture meters. Journal of the Korean Wood Science and Technology 47(1): 40-50. https://doi.org/10.5658/WOOD.2019.47.1.40
  24. Peralta, P.N., Bangi, A.P. 2003. A nonlinear regression technique for calculating the average diffusion coefficient of wood during drying. Wood and Fiber Science 35(3): 401-408.
  25. Sandoval-Torres, S., Hernandez-Bautista, E., Rodriguez-Ramirez, J., Carrillo Parrab, A. 2014. Numerical simulation of warm-air drying of Mexican softwood (Pinus pseudostrobus): An empirical and mechanistic approach. Chemical and Biochemical Engineering Quartely 28: 125-133.
  26. Shi, S.Q. 2007. Diffusion model based on Fick's second law for the moisture absorption process in wood fiber-based composites: is it suitable or not. Wood Science and Technology 41(8): 645-658. https://doi.org/10.1007/s00226-006-0123-4
  27. Siau, J. 1995. Wood influence of water on physical properties. PhD. Thesis, Virginia Polytechnic Institute and State University.
  28. Sonderegger, W., Vecellio, M., Zwicker, P., Niemz, P. 2011. Combined bound water and water vapour diffusion of Norway spruce and European beech in and between the principal anatomical directions. Holzforschung 65: 819-828. https://doi.org/10.1515/HF.2011.091
  29. Tamme, V., Muiste, P., Mitt, R., Tamme, H. 2011. Determination of effective diffusion coefficient and mechanical stress of pine wood during convective drying. Baltic Forestry 17: 110-117.
  30. Travan, L., Allegretti, O., Negri, M. 2010. Eucalyptus drying process: qualitative comparison of different clones cultivated in Italy. Edinburgh, UK. The Final Conference of COST Action E53. 4-7 May (2010), pp. 57-70.
  31. Vasic, M., Radojevic, Z., Grbavcic, Z. 2012. Calculation of the effective diffusion coefficient during the drying of clay samples. Journal of the Serbian Chemical Society 77(4): 523-533. https://doi.org/10.2298/JSC110717191V
  32. Wessels, C.B., Crafford, P.L., Toit, B. Du., Grahn, T., Johansson, M., Lundqvist, S.O., Sall, H., Seifert, T. 2016. Variation in physical and mechanical properties from three drought tolerant Eucalyptus species grown on the dry West coast of Southern Africa. European Journal of Wood and Wood Products 74: 563-575. https://doi.org/10.1007/s00107-016-1016-3