DOI QR코드

DOI QR Code

Fabrication and Characterizations of Interpenetrating Polymer Network Hydrogel Membrane Containing Hydrogel Beads

하이드로젤 비드를 포함한 상호 침투 고분자 네트워크 하이드로젤 멤브레인의 제조 및 특성 분석

  • Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
  • 김도형 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2019.06.28
  • Accepted : 2019.08.22
  • Published : 2019.08.31

Abstract

In this study, alginate-based hydrogel membranes composed of hydrogel beads and highly tough hydrogel matrix including moisturizing oil and natural emulsifier were prepared and their elution characteristics were evaluated. As a result, it was confirmed that the elution rate of the moisturizing oil component can be controlled within a desired range by controlling the composition of the hydrogel bead and the tough hydrogel matrix. In particular, it has been confirmed that by combining tough hydrogel having a structure of interpenetrating polymer network (IPN) and hydrogel beads, the physical stability of the membranes can be improved and the elution rate of the moisturizing oil can also be controlled more finely.

본 연구에서는 보습오일 및 천연유화제를 포함한 하이드로젤 비드 및 고강도 하이드로젤 매트릭스로 구성된 알지네이트 기반의 하이드로젤 멤브레인을 제조하고 용출 특성을 평가하였다. 실험 결과, 하이드로젤 비드 및 고강도 하이드로젤의 조성을 조절하여 보습오일 성분의 용출 속도를 원하는 범위로 제어할 수 있음을 확인하였다. 특히 상호 침투 고분자 네트워크 구조를 가지고 있는 고강도 하이드로젤과 하이드로젤 비드를 결합함으로써 멤브레인의 물리적 안정성을 높이고 동시에 보습오일의 용출 속도를 더욱 세밀하게 제어할 수 있음을 확인하였다.

Keywords

References

  1. S. Ramos, V. Homem, A. Alves, and L. Santos, "Advances in analytical methods and occurrence of organic UV-filters in the environment - A review", Sci. Total Environ., 526, 278 (2015). https://doi.org/10.1016/j.scitotenv.2015.04.055
  2. J. Shin, J. H. Cho, and S.-W. Cho, "Functional hydrogel for the application of drug delivery and tissue engineering", KIC News, 18, 2 (2015).
  3. S. C. Song, J. K. Cho, and C. J. Chun, "Drug delivery technology using hydrogel", NICE, 28, 171 (2010).
  4. T. R. Hoare and D. S. Kohane, "Hydrogels in drug delivery: Progress and challenges", Polymer, 49, 1993 (2008). https://doi.org/10.1016/j.polymer.2008.01.027
  5. X. Hou, L. Mu, F. Chen, and X. Hu, "Emerging investigator series: Design of hydrogel nanocomposites for the detection and removal of pollutants: From nanosheets, network structures and biocompatibility to machine-learning-assisted design", Environ. Sci.: Nano, 5, 2216 (2018). https://doi.org/10.1039/C8EN00552D
  6. Y. l. Lee, M. Gulfam, and B. G. Chung, "Microtechnologies and functional hydrogels for tissue engineering applications", Polymer Science and Technology, 22, 454 (2011).
  7. J. Fu and M. Panhuis, "Hydrogel properties and applications", J. Mater. Chem. B, 7, 1523 (2019). https://doi.org/10.1039/C9TB90023C
  8. A. Ishikawa, M. Fujii, K. Morimoto, T. Yamada, N. Koizumi, M. Kondoh, and Y. Watanabe, "Oil-in-water emulsion lotion providing controlled release using 2-methacryloyloxyethyl phosphorylcholine n-butyl methacrylate copolymer as emulsifier", Results Pharma Sci., 2, 16 (2012). https://doi.org/10.1016/j.rinphs.2012.01.001
  9. S. G. Lee, S. R. Kim, H. I. Cho, M. H. Kang, D. W. Yeom, S. H. Lee, S. k. Lee, and Y. W. Choi, "Hydrogel-based ultra-moisturizing cream formulation for skin hydration and enhanced dermal drug delivery", Biol. Pharm. Bull., 37, 1674 (2014). https://doi.org/10.1248/bpb.b14-00458
  10. B. Semmling, S. Nagel, K. Sternberg, W. Weitschies, and A. Seidlitz, "Development of hydrophobized alginate hydrogels for the vessel-simulating flow-through cell and their usage for biorelevant drug-eluting stent testing", AAPS Pharm. Sci. Tech., 14, 1209 (2012).
  11. J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, "Highly stretchable and tough hydrogels", Nature, 489, 133 (2012). https://doi.org/10.1038/nature11409
  12. T.-H. Kim and Y.-C. Nho, "Synthesis of PVA/PVP hydrogel by irradiation crosslinking", Polymer (Korea), 25, 270 (2001).
  13. Enas M. Ahmed, "Hydrogel: Preparation, characterization", J. Adv. Res., 6, 105 (2015). https://doi.org/10.1016/j.jare.2013.07.006
  14. N. Chirani, L'H. Yahia, L. Gritsch, F. L. Motta, S. Chirani, and S. Fare, "History and applications of hydrogels", J. Biomed. Sci., 4, 1 (2015). https://doi.org/10.1159/000456957
  15. D. Mark, S. Haeberle, R. Zengerle, J. Ducree, and G. T. Vladisavljevic, "Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle", J. Colloid Interface Sci., 336, 634 (2009). https://doi.org/10.1016/j.jcis.2009.04.029
  16. M. Bahram, N. Mohseni, and M. Moghtader, "An introduction to hydrogels and some recent applications", Emerging Concepts in Analysis and Applications of Hydrogels, 24, (2016).
  17. C. L. Heaysman, G. J. Phillips, A. W. Lloyd, and A. L. Lewis, "Synthesis and characterisation of cationic quaternary ammonium modified polyvinyl alcohol hydrogel beads as a drug delivery embolisation system", J. Mater. Sci. Mater. Med., 27(53), 1 (2016).
  18. B. Zeeb, A. H. Saberi, J. Weissa, and D. J. McClements, "Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: Impact of emulsifier type and pH", Soft Matter., 11, 2228 (2015). https://doi.org/10.1039/C4SM02791D
  19. W.-P. Voo, C.-W. Ooi, A. Islam, B.-T. Tey, and E.-S. Chan, "Calcium alginate hydrogel beads with high stiffness and extended dissolution behaviour", Eur. Polym. J., 75, 343 (2016). https://doi.org/10.1016/j.eurpolymj.2015.12.029
  20. C. B. Jeong, J. Y. Han, J. C. Cho, K. D. Suh, and G. W. Nam, "Analysis of electrical property changes of skin by oil-in-water emulsion components", Int. J. Cosmet. Sci., 35, 402 (2013). https://doi.org/10.1111/ics.12059
  21. H. Tokuyama and N. Yazaki, "Preparation of poly(N-isopropylacrylamide) hydrogel beads by circulation polymerization", React. Funct. Polym., 70, 967 (2010). https://doi.org/10.1016/j.reactfunctpolym.2010.10.004
  22. F. Topuz and O. Okay, "Macroporous hydrogel beads of high toughness and superfast responsivity", React. Funct. Polym., 69, 273 (2009). https://doi.org/10.1016/j.reactfunctpolym.2009.01.009
  23. M. H. Lee, S. J. Kim, and S. N. Park, "Development of porous cellulose-hydrogel system for enhanced transdermal delivery of quercetin and rutin", Polymer(Korea), 37, 347 (2013).