DOI QR코드

DOI QR Code

Comparative Investigation of Interfacial Characteristics between HfO2/Al2O3 and Al2O3/HfO2 Dielectrics on AlN/p-Ge Structure

  • Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech)) ;
  • Yun, Hee Ju (Departmet of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech)) ;
  • Choi, Seok (Departmet of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech)) ;
  • Choi, Byung Joon (Departmet of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech))
  • Received : 2019.06.17
  • Accepted : 2019.08.06
  • Published : 2019.08.27

Abstract

The electrical and interfacial properties of $HfO_2/Al_2O_3$ and $Al_2O_3/HfO_2$ dielectrics on AlN/p-Ge interface prepared by thermal atomic layer deposition are investigated by capacitance-voltage(C-V) and current-voltage(I-V) measurements. In the C-V measurements, humps related to mid-gap states are observed when the ac frequency is below 100 kHz, revealing lower mid-gap states for the $HfO_2/Al_2O_3$ sample. Higher frequency dispersion in the inversion region is observed for the $Al_2O_3/HfO_2$ sample, indicating the presence of slow interface states A higher interface trap density calculated from the high-low frequency method is observed for the $Al_2O_3/HfO_2$ sample. The parallel conductance method, applied to the accumulation region, shows border traps at 0.3~0.32 eV for the $Al_2O_3/HfO_2$ sample, which are not observed for the $Al_2O_3/HfO_2$ sample. I-V measurements show a reduction of leakage current of about three orders of magnitude for the $HfO_2/Al_2O_3$ sample. Using the Fowler-Nordheim emission, the barrier height is calculated and found to be about 1.08 eV for the $HfO_2/Al_2O_3$ sample. Based on these results, it is suggested that $HfO_2/Al_2O_3$ is a better dielectric stack than $Al_2O_3/HfO_2$ on AlN/p-Ge interface.

Keywords

References

  1. P. Lim, D. Chi, X. Wang and Y. Yeo, Appl. Phys. Lett., 101, 172103 (2012). https://doi.org/10.1063/1.4762003
  2. K. Prabhakaran, F. Maeda, Y. Watanabe and T. Ogino, Appl. Phys. Lett., 76, 2244 (2000). https://doi.org/10.1063/1.126309
  3. F. Bin, L. Xia, F. Xi, M. Fei, F. Jiao and H. Yue, Chin. Phys. B, 22, 037702 (2013). https://doi.org/10.1088/1674-1056/22/3/037702
  4. Y. Seo, C. Kim, T. Lee, W. Hwang, H. Yu, Y. Choi and B. Cho, IEEE Trans. Electron Dev., 64, 3998 (2017). https://doi.org/10.1109/TED.2017.2741496
  5. Q. Xie, S. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, X. Qu, Y. Jiang, D. Deduytsche and C. Detavernier, Semicond. Sci. Technol., 27, 074012 (2012). https://doi.org/10.1088/0268-1242/27/7/074012
  6. Y. Fukuda, T. Ueno, S. Hirono and S. Hashimoto, Jpn. J. Appl. Phys., 44, 6981 (2005). https://doi.org/10.1143/JJAP.44.6981
  7. M. Perego, G. Scarel, M. Fanciulli, I. Fedushkin and A. Skatova, Appl. Phys. Lett., 90, 162115 (2007). https://doi.org/10.1063/1.2723684
  8. D. Kuzum, T. Krishnamohan, A. Nainani, Y. Sun, P. Pianetta, H. Wong and K. Saraswat, IEEE Trans. Electron Dev., 58, 59 (2011). https://doi.org/10.1109/TED.2010.2088124
  9. R. Zhang, P.-C. Huang, J.-C. Lin, N. Taoka, M. Takenaka and S. Takagi, IEEE Trans. Electron Dev., 60, 927 (2013). https://doi.org/10.1109/TED.2013.2238942
  10. D. Kuzum, T. Krishnamohan, A. Pethe, A. Okyay, Y. Oshima, Y. Sun, J. McVittie, P. Pianetta, P. McIntyre and K. Saraswat, IEEE Electron Dev. Lett., 29, 328 (2008). https://doi.org/10.1109/LED.2008.918272
  11. H. Li, L. Lin and J. Robertson, Appl. Phys. Lett., 101, 052903 (2012). https://doi.org/10.1063/1.4742166
  12. H. Li, Y. Guo and J. Robertson, Microelectron. Eng., 147, 168 (2015). https://doi.org/10.1016/j.mee.2015.04.081
  13. R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka and S. Takagi, J. Electrochem. Soc., 158, G178 (2011). https://doi.org/10.1149/1.3599065
  14. H. Kim, P. McIntyre, C. Chui, K. Saraswat and M. Cho, Appl. Phys. Lett., 85, 2902 (2004). https://doi.org/10.1063/1.1797564
  15. X. Li, Y. Cao, A. Li, H. Li and D. Wu, ECS Solid State Lett., 1, N10 (2012). https://doi.org/10.1149/2.006202ssl
  16. I. Krylov, L. Kornblum, A. Gavrilov, D. Ritter and M. Eizenberg, Appl. Phys. Lett., 100, 173508 (2012). https://doi.org/10.1063/1.4704925
  17. D. Misra, Electrochem. Soc. Interface, 20, 47 (2011). https://doi.org/10.1149/2.F05114if
  18. M. Usman, C. Henkel and A. Hall'en, ECS J. Solid State Sci. Technol., 2, N3087 (2013). https://doi.org/10.1149/2.013308jss
  19. G. Wilk, M. Green, M. Ho, B. Busch, T. Sorsch, F. Klemens, B. Brijs, R. van Dover, A. Kornblit, T. Gustafsson, E. Garfunkel, S. Hillenius, D. Monroe, P. Kalavade and M. Hergenrother, Tech. Dig. VLSI Symp., p. 88 (2002).
  20. J. Kerr, Strengths of Chemical bonds, in CRC Handbook of Chemistry and Physics, p. 9-54, ed. D. R. Lide, CRC Press, Boca Raton, FL (2005).
  21. R. Engel-Herbert, Y. Hwang and S. Stemmer, J. Appl. Phys., 108, 124101 (2010). https://doi.org/10.1063/1.3520431
  22. F. Bellenger, M. Houssa, A. Delabie, V. Afanasiev, T. Conard, M. Caymax, M. Meuris, K. Meyer and M. Heyns, J. Electrochem. Soc., 155, G33 (2008). https://doi.org/10.1149/1.2819626
  23. Y. Choi, H. Lim, S. Lee, S. Suh, J. Kim, H. Jung, S. Park, J. Lee, S. Kim, C. Hwang and H. Kim, ACS. Appl, Mater. Interfaces, 4, 7885 (2014)
  24. H. Seo, F. Bellenger, K. Chung, M. Houssa, M. Meuris, M. Heyns and G. Lucovsky, J. Appl. Phys., 106, 044909 (2009). https://doi.org/10.1063/1.3204026
  25. Y. Yuan, L. Wang, B. Yu, B. Shin, J. Ahn, P. McIntyre, P. Asbeck, M. Rodwell and Y. Taur, IEEE Electron Dev. Lett., 32, 485 (2011). https://doi.org/10.1109/LED.2011.2105241
  26. D. Schroder, Semiconductor Material and Device Characterization, p. 1, Wiley, New York, USA (2005).
  27. S. Gupta, E. Simoen, R. Loo, O. Madia, D. Lin, C. Merckling, Y. Shimura, T. Conard, J. Lauwaert, H. Vrielinck and M. Heyns, ACS Appl. Mater. Interfaces, 8, 13181 (2016). https://doi.org/10.1021/acsami.6b01582
  28. D. Wang, S. Kojima, K. Sakamoto, K. Yamamoto and H. Nakashima, J. Appl. Phys., 112, 083707 (2012). https://doi.org/10.1063/1.4759139
  29. G. He, L. Zhang, G. Meng, G. Li, Q. Fang and J. Zhang, J. Appl. Phys., 102, 094103 (2007). https://doi.org/10.1063/1.2802994
  30. F. Tian and E. Chor, J. Electrochem. Soc., 157, H557 (2010). https://doi.org/10.1149/1.3353799
  31. E. Miyazaki, Y. Goda, S. Kishimoto and T. Mizutani, Solid-State Electron., 62, 152 (2011). https://doi.org/10.1016/j.sse.2011.04.017
  32. J. Robertson and B. Falabretti, J. Appl. Phys., 100, 014111 (2006). https://doi.org/10.1063/1.2213170
  33. D. Deen, S. Binari, D. Storm, D. Katzer, J. Roussos, J. Hackley and T. Gougousi, Electron. Lett., 45, 423 (2009). https://doi.org/10.1049/el.2009.3688
  34. G. Dutta, N. DasGupta and A. DasGupta, IEEE Trans. Electron Dev., 64, 3609 (2017). https://doi.org/10.1109/TED.2017.2723932