DOI QR코드

DOI QR Code

Decursinol Angelate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Modulating Type 17 Helper T Cell Responses

  • Thapa, Bikash (Institute of Bioscience and Biotechnology, Hallym University) ;
  • Pak, Seongwon (Department of Biomedical Science, Hallym University) ;
  • Kwon, Hyun-Joo (Department of Microbiology, College of Medicine, Hallym University) ;
  • Lee, Keunwook (Institute of Bioscience and Biotechnology, Hallym University)
  • Received : 2019.01.10
  • Accepted : 2019.02.20
  • Published : 2019.09.01

Abstract

Angelica gigas has been used as a Korean traditional medicine for pain relief and gynecological health. Although the extracts are reported to have an anti-inflammatory property, the bioactive compounds of the herbal plant and the effect on T cell responses are unclear. In this study, we identified decursinol angelate (DA) as an immunomodulatory ingredient of A. gigas and demonstrated its suppressive effect on type 17 helper T (Th17) cell responses. Helper T cell culture experiments revealed that DA impeded the differentiation of Th17 cells and IL-17 production without affecting the survival and proliferation of CD4 T cells. By using a dextran sodium sulfate (DSS)-induced colitis model, we determined the therapeutic potential of DA for the treatment of ulcerative colitis. DA treatment attenuated the severity of colitis including a reduction in weight loss, colon shortening, and protection from colonic tissue damage induced by DSS administration. Intriguingly, Th17 cells concurrently with neutrophils in the colitis tissues were significantly decreased by the DA treatment. Overall, our experimental evidence reveals for the first time that DA is an anti-inflammatory compound to modulate inflammatory T cells, and suggests DA as a potential therapeutic agent to manage inflammatory conditions associated with Th17 cell responses.

Keywords

References

  1. Allez, M. and Mayer, L. (2004) Regulatory T cells: peace keepers in the gut. Inflamm. Bowel Dis. 10, 666-676. https://doi.org/10.1097/00054725-200409000-00027
  2. Baumgart, D. C. and Carding, S. R. (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627-1640. https://doi.org/10.1016/S0140-6736(07)60750-8
  3. Boschetti, G., Kanjarawi, R., Bardel, E., Collardeau-Frachon, S., Duclaux- Loras, R., Moro-Sibilot, L., Almeras, T., Flourie, B., Nancey, S. and Kaiserlian, D. (2017) Gut inflammation in mice triggers proliferation and function of mucosal Foxp3+ regulatory T cells but impairs their conversion from CD4+ T cells. J. Crohns Colitis 11, 105-117. https://doi.org/10.1093/ecco-jcc/jjw125
  4. Cho, J. H., Kwon, J. E., Cho, Y., Kim, I. and Kang, S. C. (2015) Anti-inflammatory effect of Angelica gigas via heme oxygenase (HO)-1 expression. Nutrients 7, 4862-4874. https://doi.org/10.3390/nu7064862
  5. Choi, K. O., Lee, I., Paik, S. Y., Kim, D. E., Lim, J. D., Kang, W. S. and Ko, S. (2012) Ultrafine Angelica gigas powder normalizes ovarian hormone levels and has antiosteoporosis properties in ovariectomized rats: particle size effect. J. Med. Food 15, 863-872. https://doi.org/10.1089/jmf.2011.2047
  6. de Mattos, B. R., Garcia, M. P., Nogueira, J. B., Paiatto, L. N., Albuquerque, C. G., Souza, C. L., Fernandes, L. G., Tamashiro, W. M. and Simioni, P. U. (2015) Inflammatory bowel disease: an overview of immune mechanisms and biological treatments. Mediators Inflamm. 2015, 493012. https://doi.org/10.1155/2015/493012
  7. Gitter, A. H., Wullstein, F., Fromm, M. and Schulzke, J. D. (2001) Epithelial barrier defects in ulcerative colitis: characterization and quantification by electrophysiological imaging. Gastroenterology 121, 1320-1328. https://doi.org/10.1053/gast.2001.29694
  8. Harrison, O. J. and Powrie, F. M. (2013) Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb. Perspect. Biol. 5, a018341. https://doi.org/10.1101/cshperspect.a018341
  9. Ito, R., Kita, M., Shin-Ya, M., Kishida, T., Urano, A., Takada, R., Sakagami, J., Imanishi, J., Iwakura, Y., Okanoue, T., Yoshikawa, T., Kataoka, K. and Mazda, O. (2008) Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem. Biophys. Res. Commun. 377, 12-16. https://doi.org/10.1016/j.bbrc.2008.09.019
  10. Ivanov, II, McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. and Littman, D. R. (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121-1133. https://doi.org/10.1016/j.cell.2006.07.035
  11. Jiang, C., Guo, J., Wang, Z., Xiao, B., Lee, H. J., Lee, E. O., Kim, S. H. and Lu, J. (2007) Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells. Breast Cancer Res. 9, R77. https://doi.org/10.1186/bcr1790
  12. Jiang, X. P., Huang, X. L., Yang, Z. P., Wang, S. C., Xie, W., Miao, L., Tang, L. and Huang, Z. M. (2018) Iguratimod ameliorates inflammatory responses by modulating the Th17/Treg paradigm in dextran sulphate sodium-induced murine colitis. Mol. Immunol. 93, 9-19. https://doi.org/10.1016/j.molimm.2017.10.008
  13. Kim, B. S., Seo, H., Kim, H. J., Bae, S. M., Son, H. N., Lee, Y. J., Ryu, S., Park, R. W. and Nam, J. O. (2015) Decursin from Angelica gigas Nakai inhibits B16F10 melanoma growth through induction of apoptosis. J. Med. Food 18, 1121-1127. https://doi.org/10.1089/jmf.2014.3397
  14. Kim, E. R. and Chang, D. K. (2014) Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol. 20, 9872-9881. https://doi.org/10.3748/wjg.v20.i29.9872
  15. Kim, J. H., Jeong, J. H., Jeon, S. T., Kim, H., Ock, J., Suk, K., Kim, S. I., Song, K. S. and Lee, W. H. (2006) Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages. Mol. Pharmacol. 69, 1783-1790. https://doi.org/10.1124/mol.105.021048
  16. Lee, G. R. (2018) The balance of Th17 versus Treg cells in autoimmunity. Int. J. Mol. Sci. 19, E730. https://doi.org/10.3390/ijms19030730
  17. Lee, K., Gudapati, P., Dragovic, S., Spencer, C., Joyce, S., Killeen, N., Magnuson, M. A. and Boothby, M. (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743-753. https://doi.org/10.1016/j.immuni.2010.06.002
  18. Lee, K., Heffington, L., Jellusova, J., Nam, K. T., Raybuck, A., Cho, S. H., Thomas, J. W., Rickert, R. C. and Boothby, M. (2013) Requirement for Rictor in homeostasis and function of mature B lymphoid cells. Blood 122, 2369-2379.
  19. Longhi, M. S., Vuerich, M., Kalbasi, A., Kenison, J. E., Yeste, A., Csizmadia, E., Vaughn, B., Feldbrugge, L., Mitsuhashi, S., Wegiel, B., Otterbein, L., Moss, A., Quintana, F. J. and Robson, S. C. (2017) Bilirubin suppresses Th17 immunity in colitis by upregulating CD39. JCI Insight 2, e92791. https://doi.org/10.1172/jci.insight.92791
  20. Maharjan, S., Park, B. K., Lee, S. I., Lim, Y., Lee, K. and Kwon, H. J. (2018) Gomisin G inhibits the growth of triple-negative breast cancer cells by suppressing AKT phosphorylation and decreasing cyclin D1. Biomol. Ther. (Seoul) 26, 322-327. https://doi.org/10.4062/biomolther.2017.235
  21. Matricon, J., Barnich, N. and Ardid, D. (2010) Immunopathogenesis of inflammatory bowel disease. Self Nonself 1, 299-309. https://doi.org/10.4161/self.1.4.13560
  22. Monteleone, I., Sarra, M., Pallone, F. and Monteleone, G. (2012) Th17-related cytokines in inflammatory bowel diseases: friends or foes? Curr. Mol. Med. 12, 592-597. https://doi.org/10.2174/156652412800620066
  23. Neurath, M. F. (2014) Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329-342. https://doi.org/10.1038/nri3661
  24. Oh, S. R., Ok, S., Jung, T. S., Jeon, S. O., Park, J. M., Jung, J. W. and Ryu, D. S. (2017) Protective effect of decursin and decursinol angelate-rich Angelica gigas Nakai extract on dextran sulfate sodium-induced murine ulcerative colitis. Asian Pac. J. Trop. Med. 10, 864-870. https://doi.org/10.1016/j.apjtm.2017.08.017
  25. Rudensky, A. Y. (2011) Regulatory T cells and Foxp3. Immunol. Rev. 241, 260-268. https://doi.org/10.1111/j.1600-065X.2011.01018.x
  26. Strober, W. and Fuss, I. J. (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140, 1756-1767. https://doi.org/10.1053/j.gastro.2011.02.016
  27. Tesmer, L. A., Lundy, S. K., Sarkar, S. and Fox, D. A. (2008) Th17 cells in human disease. Immunol. Rev. 223, 87-113. https://doi.org/10.1111/j.1600-065X.2008.00628.x
  28. Zhu, J. and Paul, W. E. (2008) CD4 T cells: fates, functions, and faults. Blood 112, 1557-1569. https://doi.org/10.1182/blood-2008-05-078154

Cited by

  1. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease vol.9, pp.12, 2019, https://doi.org/10.3390/antiox9121214
  2. Decursinol Angelate Mitigates Sepsis Induced by Methicillin-Resistant Staphylococcus aureus Infection by Modulating the Inflammatory Responses of Macrophages vol.22, pp.20, 2019, https://doi.org/10.3390/ijms222010950