DOI QR코드

DOI QR Code

Effect of confining stress on representative elementary volume of jointed rock masses

  • Wu, Na (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Liang, Zhengzhao (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Li, Yingchun (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Qian, Xikun (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Gong, Bin (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
  • Received : 2019.06.17
  • Accepted : 2019.08.03
  • Published : 2019.08.30

Abstract

Estimation of representative elementary volume (REV) of jointed rock masses is critical to predict the mechanical behavior of field-scale rock masses. The REV of jointed rock masses at site is strongly influenced by stress state. The paper proposed a method to systematically studied the influence of confining stress on the REV of jointed rock masses with various strengths (weak, medium and strong), which were sourced from the water inlet slope of Xiaowan Hydropower Station, China. A finite element method considering material heterogeneity was employed, a series of two-dimensional (2D) models was established based on the Monte-Carlo method and a lot of biaxial compressive tests were conducted. Numerical results showed that the REV of jointed rock masses presented a step-like reduction as the normalized confining stress increased. Confining stress weakened the size effect of jointed rock masses, indicating that the REV determined under uniaxial compression test can be reasonably taken as the REV of jointed rock masses under complexed in-situ stress environment.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Amadei, B. and Goodman, R. (1981), "A 3-D constitutive relation for fractured rock masses", Proceedings of the International Symposium on the Mechanical Behavior of Structure Media, Ottawa, Canada, October.
  2. Bear, J. (1972), "Dynamics of fluids in porous media", Eng. Geol., 7(2), 174-175. https://doi.org/10.1016/0013-7952(73)90047-1.
  3. Bieniawski, Z.T. (1978), "Determining rock mass deformability: Experience from case histories", Int. J. Rock Mech. Min. Sci., 15(5), 237-247. https://doi.org/10.1016/0148-9062(78)90956-7.
  4. Barton, N. (2002), "Some new Q-value correlations to assist in site characterization and tunnel design", Int. J. Rock Mech. Min. Sci., 39(2), 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4.
  5. Baghbanan, A. (2008), "Scale and stress effects on hydromechanical properties of fractured rock masses", Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden.
  6. Bidgoli, M.N. and Jing, L. (2014), "Anisotropy of strength and deformability of fractured rocks", J. Rock Mech. Geotech. Eng., 6(2), 156-164. https://doi.org/10.1016/j.jrmge.2014.01.009.
  7. Bandpey, A.K., Shahriar, K., Sharifzadeh, M. and Marefvand, P. (2018), "Validation of 3D discrete fracture network model focusing on areal sampling methods-a case study on the powerhouse cavern of Rudbar Lorestan pumped storage power plant, Iran", Geomech. Eng., 16(1), 21-34. https://doi.org/10.12989/gae.2018.16.1.021.
  8. Cuisiat, F.D. and Haimson, B.C. (1992), "Scale effects in rock mass stress measurements", Int. J. Rock Mech. Min. Sci., 29(2), 99-117. https://doi.org/10.1016/0148-9062(92)92121-R.
  9. Cai, M. (2008), "Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-insight from numerical modeling", Int. J. Rock Mech. Min. Sci., 45(5), 763-772. https://doi.org/ 10.1016/0148-9062(78)90956-7.
  10. Darlington, W.J., Ranjith, P.G. and Choi S.K. (2011), "The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials", Rock Mech. Rock. Eng., 44(5), 513-529. https://doi.org/10.1007/s00603-011-0161-6.
  11. Esmaieli, K., Hadjigeorgiou, J. and Grenon, M. (2010), "Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine", Int. J. Rock Mech. Min. Sci., 47(6), 915-926. https://doi.org/10.1016/j.ijrmms.2010.05.010.
  12. Gao, M., Liang, Z.Z, Jia, S.P, Li, Y.C and Yang, X.X. (2019), "An equivalent anchoring method for anisotropic rock masses in underground tunnelling", Tunn. Undergr. Sp. Technol., 85, 294-306. https://doi.org/10.1016/j.tust.2018.12.017.
  13. Hill R.j. (1963), "Elastic properties of reinforced solids: Some theoretical principles", J. Mech. Phys. Solids, 11(5), 357-372. https://doi.org/ 10.1016/0022-5096(63)90036-X.
  14. Heuze, F.E. (1980), "Scale effects in the determination of rock mass strength and deformability", Rock Mech. Rock. Eng., 12(3-4), 167-192. https://doi.org/10.1007/BF01251024.
  15. Hoek, E. (1983), "Underground excavations in rock", Eng. Geol., 19(3), 244-246. https://doi.org/10.1016/0013-7952(83)90009-1.
  16. Huang, N., Liu, R., Jiang, Y., Cheng, Y., and Li, B. (2019), "Shearflow coupling characteristics of a three-dimensional discrete fracture network-fault model considering stress-induced aperture variations", J. Hydrol., 571, 416-424. https://doi.org/10.1016/j.jhydrol.2019.01.068.
  17. Kulatilake, P.H.S.W. (1985), "Estimating elastic constants and strength of discontinuous rock", J. Geotech. Eng., 111(7), 847-864. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:7(847).
  18. Krauland, N., Soder, P. and Agmalm, G. (1989), "Determination of rock mass strength by rock mass classification-some experience and questions from boliden mines", Int. J. Rock Mech. Min. Sci., 26(1), 115-123. https://doi.org/10.1016/0148-9062(89)90531-7.
  19. Khani, A., Baghbanan, A. and Hashemolhosseini, H. (2013), "Numerical investigation of the effect of fracture intensity on deformability and REV of fractured rock masses", Int. J. Rock Mech. Min. Sci., 63, 104-112. https://doi.org/10.1016/j.ijrmms.2013.08.006.
  20. Long, J.C.S., Remer, J.S., Wilson, C.R. and Witherspoon, P.A. (1982), "Porous media equivalents for networks of discontinuous fractures", Water Resour. Res., 18(3), 645-658. https://doi.org/10.1029/wr018i003p00645.
  21. Li, G. and Tang, C.A. (2015), "A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock", Int. J. Rock Mech. Min. Sci., 74, 133-150. https://doi.org/10.1016/j.ijrmms.2014.12.006.
  22. Lei, Q., Latham, J.P., Xiang, J. and Tsang, C.F. (2017), "Role of natural fractures in damage evolution around tunnel excavation in fractured rocks", Eng. Geol., 231, 100-113. https://doi.org/10.1016/j.enggeo.2017.10.013.
  23. Laghaei, M., Baghbanan, A., Hashemolhosseini, H. and Dehghanipoodeh, M. (2018), "Numerical determination of deformability and strength of 3D fractured rock mass", Int. J. Rock Mech. Min. Sci., 110, 246-256. https://doi.org/10.1016/j.ijrmms.2018.07.015.
  24. Li, Y.C., Sun, S.Y. and Tang, C.A. (2019), "Analytical prediction of the shear behaviour of rock joints with quantified waviness and unevenness through wavelet analysis", Rock Mech. Rock Eng., 1-13. https://doi.org/10.1007/s00603-019-01817-5.
  25. Neuman, S.P. (1987), "Stochastic continuum representation of fractured rock permeability as an alternative to the RVE and fracture network concepts", Proceedings of the 28th US Symposium of Rock Mechanics, Tucson, U.S.A., July.
  26. Oda, M. (1988), "A method for evaluating the representative elementary volume based on joint survey of rock masses", Can. Geotech. J., 25(3), 440-447. https://doi.org/10.1139/t88-049.
  27. Oh, J., Moon, T., Canbulat, I. and Moon, J.S. (2019), "Design of initial support required for excavation of underground cavern and shaft from numerical analysis", Geomech. Eng., 17(6), 573-581. https://doi.org/10.12989/gae.2019.17.6.573.
  28. Pouya, A. and Ghoreychi, M. (1998), "Determination of rock mass strength properties by homogenization", Int. J. Numer. Anal. Meth. Geomech., 25(13), 1285-1303. https://doi.org/10.1007/978-3-7091-2512-0-68.
  29. Prudencio, M. and Jan, M.V.S. (2007), "Strength and failure modes of rock mass models with non-persistent joints", Int. J. Rock Mech. Min. Sci., 44(6), 890-902. https://doi.org/10.1016/j.ijrmms.2007.01.005.
  30. Pariseau W.G., Puri, S. and Schmelter, S.C. (2008), "A new model for effects of impersistent joint sets on rock slope stability", Int. J. Rock Mech. Min. Sci., 45(2), 122-131. https://doi.org/10.1016/j.ijrmms.2007.05.001.
  31. Ribacchi, R. (2000), "Mechanical tests on pervasively jointed rock material: Insight into rock mass behavior", Rock Mech. Rock Eng., 33(4), 243-266. https://doi.org/10.1007/s006030070.
  32. Sarfarazi, V.H.H. and Alireza, B.S. (2017), "The effect of compression load and rock bridge geometry on the shear mechanism of weak plane", Geomech. Eng., 13(3), 431-446. https://doi.org/10.12989/gae.2017.13.3.431.
  33. Shemirani, A.B., Haeri, H., Sarfarazi, V. and Hedayat, A. (2017), "A review paper about experimental investigations on failure behaviour of non-persistent joint", Geomech. Eng., 13(4), 535-570. https://doi.org/10.12989/gae.2017.13.4.535.
  34. Tang, C.A. (1997), "Numerical simulation of progressive rock failure and associated seismicity", Int. J. Rock Mech. Min. Sci., 34(2), 249-261. https://doi.org/10.1016/S0148-9062(96)00039-3.
  35. Vazaios, I., Farahmand, K., Vlachopoulos, N. and Diederichs, M. S. (2018), "Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM) study", J. Rock Mech. Geotech. Eng., 10(3), 436-456. https://doi.org/10.1016/j.jrmge.2018.01.002.
  36. Wang, M., Kulatilake, P.H.S.W., Um, J. and Narvaiz, J. (2002), "Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling", Int. J. Rock Mech. Min. Sci., 39(7), 887-904. https://doi.org/10.1016/S1365-1609(02)00067-9.
  37. Wong, R.H.C., Tang, C.A., Chau, K.T. and Lin, P. (2002), "Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression", Eng. Fract. Mech., 69(17), 1853-1871. https://doi.org/10.1016/S0013-7944(02)00065-6.
  38. Wang, X.G., Jia, Z.X., Zhang, F.M. and Li, X.Q. (2010), The Principle of Network Simulation of Rock Mass Structure and Its Engineering Application, China Water Conservancy and Hydropower Press, Beijing, China.
  39. Wang, P.T., Yang, T.H., Xu, T., Cai, M.F. and Li, C.H. (2016), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x.
  40. Wu, Z., Fan, L., Liu, Q. and Ma, G. (2017), "Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method", Eng. Geol., 225, 49-60. https://doi.org/10.1016/j.enggeo.2016.08.018.
  41. Wu, N., Liang, Z.Z., Li, Y.C., Li, H., Li, W.R. and Zhang, M.L. (2019), "Stress-dependent anisotropy index of strength and deformability of jointed rock mass: Insights from a numerical study", Bull. Eng. Geol. Environ., 1-13. https://doi.org/10.1007/s10064-019-01483-5.
  42. Xu, T., Ranjith, P.G., Wasantha, P.L.P., Zhao, J., Tang, C.A. and Zhu, W.C. (2013), "Influence of the geometry of partiallyspanning joints on mechanical properties of rock in uniaxial compression", Eng. Geol., 167, 134-147. https://doi.org/10.1016/j.enggeo.2013.10.011.
  43. Yang, S.Q. and Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fract., 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
  44. Yang, J.P., Chen, W.Z., Yang, D.S. and Yuan, J.Q. (2015a), "Numerical determination of strength and deformability of fractured rock mass by FEM modeling", Comput. Geotech., 64, 20-31. https://doi.org/10.1016/j.compgeo.2014.10.011.
  45. Yang, X.X., Kulatilake, P.H.S.W., Jing, H.W. and Yang, S.Q. (2015b), "Numerical simulation of a jointed rock block mechanical behavior adjacent to an underground excavation and comparison with physical model test results", Tunn. Undergr. Sp. Technol., 50, 129-142. https://doi.org/10.1016/j.tust.2015.07.006.
  46. Yu, Q.L., Zhu, W.C., Tang, C.A. and Yang, T.H. (2014), "Impact of rock microstructures on failure processes-Numerical study based on DIP technique", Geomech. Eng., 7(4), 375-401. https://doi.org/10.12989/gae.2014.7.4.375.
  47. Zhang, W., Chen, J.P., Chen, H.E., Xu, D.Z. and Li, Y. (2013), "Determination of RVE with consideration of the spatial effect", Int. J. Rock Mech. Min. Sci., 61(7), 154-160. https://doi.org/10.1016/j.ijrmms.2013.02.013.
  48. Zhou, J.R., Wei, J., Yang, T.H., Zhu, W.C., Li, L.C. and Zhang, P.H. (2018), "Damage analysis of rock mass coupling joints, water and microseismicity", Tunn. Undergr. Sp. Technol., 71, 366-381. https://doi.org/10.1016/j.tust.2017.09.006.