DOI QR코드

DOI QR Code

Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases

  • Chang, Eun-Ah (Department of Laboratory Medicine, Korea University Ansan Hospital) ;
  • Jin, Sung-Won (Department of Neurosurgery, Korea University Ansan Hospital) ;
  • Nam, Myung-Hyun (Department of Laboratory Medicine, Korea University Ansan Hospital) ;
  • Kim, Sang-Dae (Department of Neurosurgery, Korea University Ansan Hospital)
  • 투고 : 2018.12.07
  • 심사 : 2019.04.22
  • 발행 : 2019.09.01

초록

The generation of human induced pluripotent stem cells (iPSCs) from somatic cells using gene transfer opens new areas for precision medicine with personalized cell therapy and encourages the discovery of essential platforms for targeted drug development. iPSCs retain the genome of the donor, may regenerate indefinitely, and undergo differentiation into virtually any cell type of interest using a range of published protocols. There has been enormous interest among researchers regarding the application of iPSC technology to regenerative medicine and human disease modeling, in particular, modeling of neurologic diseases using patient-specific iPSCs. For instance, Parkinson's disease, Alzheimer's disease, and spinal cord injuries may be treated with iPSC therapy or replacement tissues obtained from iPSCs. In this review, we discuss the work so far on generation and characterization of iPSCs and focus on recent advances in the use of human iPSCs in clinical setting.

키워드

참고문헌

  1. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHHH, Newman SA, et al. : iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94 : 278-293.e9, 2017 https://doi.org/10.1016/j.neuron.2017.03.042
  2. Alper J : Geron gets green light for human trial of ES cell-derived product. Nat Biotechnol 27 : 213-214, 2009 https://doi.org/10.1038/nbt0309-213a
  3. Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, et al. : Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports 2 : 662-674, 2014 https://doi.org/10.1016/j.stemcr.2014.03.011
  4. Bejleri D, Streeter BW, Nachlas ALY, Brown ME, Gaetani R, Christman KL, et al. : A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Heathc Mater 7 : e1800672, 2018 https://doi.org/10.1002/adhm.201800672
  5. Charron D, Suberbielle-Boissel C, Al-Daccak R : Immunogenicity and allogenicity: a challenge of stem cell therapy. J Cardiovasc Transl Res 2 : 130-138, 2009 https://doi.org/10.1007/s12265-008-9062-9
  6. Chen KG, Mallon BS, McKay RD, Robey PG : Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14 : 13-26, 2014 https://doi.org/10.1016/j.stem.2013.12.005
  7. Chen N, Kamath S, Newcomb J, Hudson J, Garbuzova-Davis S, Bickford P, et al. : Trophic factor induction of human umbilical cord blood cells in vitro and in vivo. J Neural Eng 4 : 130-145, 2007 https://doi.org/10.1088/1741-2560/4/2/013
  8. Cohen MA, Itsykson P, Reubinoff BE : Neural differentiation of human ES cells. Curr Protoc Cell Biol Chapter 23 : Unit 23.7, 2007
  9. Cramer AO, MacLaren RE : Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases. Curr Gene Ther 13 : 139-151, 2013 https://doi.org/10.2174/1566523211313020008
  10. Crespo M, Vilar E, Tsai SY, Chang K, Amin S, Srinivasan T, et al. : Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med 23 : 878-884, 2017 https://doi.org/10.1038/nm.4355
  11. Dhawan A, Kennedy PM, Rizk EB, Ozbolat IT : Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery. J Am Acad Orthop Surg 27 : e215-e226, 2019 https://doi.org/10.5435/JAAOS-D-17-00632
  12. Drukker M, Benvenisty N : The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 22 : 136-141, 2004 https://doi.org/10.1016/j.tibtech.2004.01.003
  13. Duncan ID : Oligodendrocytes and stem cell transplantation: their potential in the treatment of leukoencephalopathies. J Inherit Metab Dis 28 : 357-368, 2005 https://doi.org/10.1007/s10545-005-7058-z
  14. Enciso J, Mayani H, Mendoza L, Pelayo R : Modeling the pro-inflammatory tumor microenvironment in acute lymphoblastic leukemia predicts a breakdown of hematopoietic-mesenchymal communication networks. Front Physiol 7 : 349, 2016
  15. Fajardo-Orduna GR, Mayani H, Montesinos JJ : Hematopoietic support capacity of mesenchymal stem cells: biology and clinical potential. Arch Med Res 46 : 589-596, 2015 https://doi.org/10.1016/j.arcmed.2015.10.001
  16. Fehlings MG, Vawda R : Cellular treatments for spinal cord injury: the time is right for clinical trials. Neurotherapeutics 8 : 704-720, 2011 https://doi.org/10.1007/s13311-011-0076-7
  17. Flores-Guzman P, Fernandez-Sanchez V, Mayani H : Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med 2 : 830-838, 2013 https://doi.org/10.5966/sctm.2013-0071
  18. Fluckiger AC, Dehay C, Savatier P : Embryonic stem cells and cell replacement therapies in the nervous system. Med Sci (Paris) 19 : 699-708, 2003 https://doi.org/10.1051/medsci/20031967699
  19. Freude K, Pires C, Hyttel P, Hall VJ : Induced pluripotent stem cells derived from Alzheimer's disease patients: the promise, the hope and the path ahead. J Clin Med 3 : 1402-1436, 2014 https://doi.org/10.3390/jcm3041402
  20. Gensel JC, Donnelly DJ, Popovich PG : Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opin Ther Targets 15 : 505-518, 2011 https://doi.org/10.1517/14728222.2011.553605
  21. Goh PA, Caxaria S, Casper C, Rosales C, Warner TT, Coffey PJ, et al. : A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS One 8 : e81622, 2013 https://doi.org/10.1371/journal.pone.0081622
  22. Gu BK, Choi DJ, Park SJ, Kim YJ, Kim CH : 3D bioprinting technologies for tissue engineering applications. Adv Exp Med Biol 1078 : 15-28, 2018 https://doi.org/10.1007/978-981-13-0950-2_2
  23. Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM : 3D Bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv Heathc Mater 6 : 1700175, 2017 https://doi.org/10.1002/adhm.201700175
  24. Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, et al. : Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease. Cell Stem Cell 16 : 269-274, 2015 https://doi.org/10.1016/j.stem.2015.01.018
  25. Hanna JH, Saha K, Jaenisch R : Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143 : 508-525, 2010 https://doi.org/10.1016/j.cell.2010.10.008
  26. Ho BX, Pek NMQ, Soh BS : Disease modeling using 3D organoids derived from human induced pluripotent stem cells. Int J Mol Sci 19 : 936, 2018 https://doi.org/10.3390/ijms19040936
  27. Isobe Y, Koyama N, Nakao K, Osawa K, Ikeno M, Yamanaka S, et al. : Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg 45 : 124-131, 2016 https://doi.org/10.1016/j.ijom.2015.06.022
  28. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, et al. : Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482 : 216-220, 2012 https://doi.org/10.1038/nature10821
  29. Kawagoe S, Higuchi T, Otaka M, Shimada Y, Kobayashi H, Ida H, et al. : Morphological features of iPS cells generated from Fabry disease skin fibroblasts using Sendai virus vector (SeVdp). Mol Genet Metab 109 : 386-389, 2013 https://doi.org/10.1016/j.ymgme.2013.06.003
  30. Kfoury Y, Scadden DT : Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16 : 239-253, 2015 https://doi.org/10.1016/j.stem.2015.02.019
  31. Kim JH, Kim HW, Cha KJ, Han J, Jang YJ, Kim DS, et al. : Nanotopography promotes pancreatic differentiation of human embryonic stem cells and induced pluripotent stem cells. ACS Nano 10 : 3342-3355, 2016 https://doi.org/10.1021/acsnano.5b06985
  32. Kim SJ, Park J, Byun H, Park YW, Major LG, Lee DY, et al. : Hydrogels with an embossed surface: an all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids. Biomaterials 188 : 198-212, 2019 https://doi.org/10.1016/j.biomaterials.2018.10.025
  33. Kiskinis E, Eggan K : Progress toward the clinical application of patientspecific pluripotent stem cells. J Clin Invest 120 : 51-59, 2010 https://doi.org/10.1172/JCI40553
  34. Kobayashi Y, Okada Y, Itakura G, Iwah H, Nishimura S, Yasuda A, et al. : Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 7 : e52787, 2012 https://doi.org/10.1371/journal.pone.0052787
  35. Konagaya S, Ando T, Yamauchi T, Suemori H, Iwata H : Long-term maintenance of human induced pluripotent stem cells by automated cell culture system. Sci Rep 5 : 16647, 2015 https://doi.org/10.1038/srep16647
  36. Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, et al. : Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12 : 487-496, 2013 https://doi.org/10.1016/j.stem.2013.01.009
  37. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. : Cerebral organoids model human brain development and microcephaly. Nature 501 : 373-379, 2013 https://doi.org/10.1038/nature12517
  38. Levison SW, Druckman SK, Young GM, Basu A : Neural stem cells in the subventricular zone are a source of astrocytes and oligodendrocytes, but not microglia. Dev Neurosci 25 : 184-196, 2003 https://doi.org/10.1159/000072267
  39. Li W, Li K, Wei W, Ding S : Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 13 : 270-283, 2013 https://doi.org/10.1016/j.stem.2013.08.002
  40. Liu C, Oikonomopoulos A, Sayed N, Wu JC : Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development 145 : dev156166, 2018 https://doi.org/10.1242/dev.156166
  41. Liu K, Yu C, Xie M, Li K, Ding S : Chemical modulation of cell fate in stem cell therapeutics and regenerative medicine. Cell Chem Biol 23 : 893-916, 2016 https://doi.org/10.1016/j.chembiol.2016.07.007
  42. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, et al. : Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1 : 55-70, 2007 https://doi.org/10.1016/j.stem.2007.05.014
  43. Marx V. Stem cells: disease models that show and tell. Nat Methods 12 : 111-114, 2015 https://doi.org/10.1038/nmeth.3263
  44. Meissner A, Wernig M, Jaenisch R : Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25 : 1177-1181, 2007 https://doi.org/10.1038/nbt1335
  45. Melton D : 'Stemness': Definitions, Criteria, and Standards in Lanza R, Atala A (eds) : Essentials of Stem Cell Biology, ed 3. London : Elsevier, 2014, pp7-17
  46. Messina DJ, Alder L, Tresco PA : Comparison of pure and mixed populations of human fetal-derived neural progenitors transplanted into intact adult rat brain. Exp Neurol 184 : 816-829, 2003 https://doi.org/10.1016/S0014-4886(03)00289-9
  47. Montesinos JJ, Mora-Garcia Mde L, Mayani H, Flores-Figueroa E, Garcia-Rocha R, Fajardo-Orduna GR, et al. : In vitro evidence of the presence of mesenchymal stromal cells in cervical cancer and their role in protecting cancer cells from cytotoxic T cell activity. Stem Cells Dev 22 : 2508-2519, 2013 https://doi.org/10.1089/scd.2013.0084
  48. Montgomery A, Wong A, Gabers N, Willerth SM : Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds. Biomater Sci 3 : 401-413, 2015 https://doi.org/10.1039/C4BM00299G
  49. Nakamura M, Okano H : Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 23 : 70-80, 2013 https://doi.org/10.1038/cr.2012.171
  50. Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC : Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6 : 78-88, 2011 https://doi.org/10.1038/nprot.2010.173
  51. Nestor MW, Noggle SA : Standardization of human stem cell pluripotency using bioinformatics. Stem Cell Res Ther 4 : 37, 2013 https://doi.org/10.1186/scrt185
  52. Nori S, Okada Y, Yasuda A, Tsuji O, Takashashi Y, Kobayashi Y, et al. : Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 108 : 16825-16830, 2011 https://doi.org/10.1073/pnas.1108077108
  53. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, et al. : Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112 : 523-533, 2013 https://doi.org/10.1161/CIRCRESAHA.111.256149
  54. Okita K, Hong H, Takahashi K, Yamanaka S : Generation of mouseinduced pluripotent stem cells with plasmid vectors. Nat Protoc 5 : 418-428, 2010 https://doi.org/10.1038/nprot.2009.231
  55. Okita K, Ichisaka T, Yamanaka S : Generation of germline-competent induced pluripotent stem cells. Nature 448 : 313-317, 2007 https://doi.org/10.1038/nature05934
  56. Ong CS, Fukunishi T, Nashed A, Blazeski A, Zhang H, Hardy S, et al. : Creation of cardiac tissue exhibiting mechanical integration of spheroids using 3D bioprinting. J Vis Exp (125) : e55438, 2017.
  57. Ong CS, Yesantharao P, Huang CY, Mattson G, Boktor J, Fukunishi T, et al. : 3D bioprinting using stem cells. Pediatr Res 83 : 223-231, 2018 https://doi.org/10.1038/pr.2017.252
  58. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. : Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451 : 141-146, 2008 https://doi.org/10.1038/nature06534
  59. Park KS, Cha KJ, Han IB, Shin DA, Cho DW, Lee SH, et al. : Mass-producible nano-featured polystyrene surfaces for regulating the differentiation of human adipose-derived stem cells. Macromol Biosci 12 : 1480-1489, 2012 https://doi.org/10.1002/mabi.201200225
  60. Park S, Kim D, Park S, Kim S, Lee D, Kim W, et al. : Nanopatterned scaffolds for neural tissue engineering and regenerative medicine. Adv Exp Med Biol 1078 : 421-443, 2018 https://doi.org/10.1007/978-981-13-0950-2_22
  61. Piao Y, Hung SS, Lim SY, Wong RC, Ko MS : Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Transl Med 3 : 787-791, 2014 https://doi.org/10.5966/sctm.2013-0036
  62. Poon A, Li T, Pires C, Nielsen TT, Nielsen JE, Holst B, et al. : Derivation of induced pluripotent stem cells from a familial Alzheimer's disease patient carrying the L282F mutation in presenilin 1. Stem Cell Res 17 : 470-473, 2016 https://doi.org/10.1016/j.scr.2016.09.016
  63. Poon A, Zhang Y, Chandrasekaran A, Phanthong P, Schmid B, Nielsen TT, et al. : Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: possibilities and challenges. N Biotechnol 39(Pt B) : 190-198, 2017 https://doi.org/10.1016/j.nbt.2017.05.009
  64. Poulsen FR, Meyer M, Rasmussen JZ : Generation of new nerve cells in the adult human brain. Ugeskr Laeger 165 : 1443-1447, 2003
  65. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. : Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165 : 1238-1254, 2016 https://doi.org/10.1016/j.cell.2016.04.032
  66. Robinton DA, Daley GQ : The promise of induced pluripotent stem cells in research and therapy. Nature 481 : 295-305, 2012 https://doi.org/10.1038/nature10761
  67. Rossi SL, Nistor G, Wyatt T, Yin HZ, Poole AJ, Weiss JH, et al. : Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord. PLoS One 5 : e11852, 2010 https://doi.org/10.1371/journal.pone.0011852
  68. Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I, Jimenez-Delgado S, Caig C, Mora S, et al. : Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO Mol Med 4 : 380-395, 2012 https://doi.org/10.1002/emmm.201200215
  69. Sanders LH, Laganiere J, Cooper O, Mak SK, Vu BJ, Huang YA, et al. : LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiol Dis 62 : 381-386, 2014 https://doi.org/10.1016/j.nbd.2013.10.013
  70. Sasaki K, Makiyama T, Yoshida Y, Wuriyanghai Y, Kamakura T, Nishiuchi S, et al. : Patient-specific human induced pluripotent stem cell model assessed with electrical pacing validates S107 as a potential therapeutic agent for catecholaminergic polymorphic ventricular tachycardia. PLoS One 11 : e0164795, 2016 https://doi.org/10.1371/journal.pone.0164795
  71. Satpathy A, Datta P, Wu Y, Ayan B, Bayram E, Ozbolat IT. Developments with 3D bioprinting for novel drug discovery. Expert Opin Drug Discov 13 : 1115-1129, 2018 https://doi.org/10.1080/17460441.2018.1542427
  72. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. : Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379 : 713-720, 2012 https://doi.org/10.1016/S0140-6736(12)60028-2
  73. Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS : Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28 : 152-163, 2010
  74. Soria-Valles C, Lopez-Otin C : iPSCs: on the road to reprogramming aging. Trends Mol Med 22 : 713-724, 2016 https://doi.org/10.1016/j.molmed.2016.05.010
  75. Strauss S : Geron trial resumes, but standards for stem cell trials remain elusive. Nat Biotechnol 28 : 989-990, 2010 https://doi.org/10.1038/nbt1010-989
  76. Takahashi K, Tanabe K, Ohnuki M, Naritta M, Ichisaka T, Tomoda K, et al. : Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 : 861-872, 2007 https://doi.org/10.1016/j.cell.2007.11.019
  77. Takahashi K, Yamanaka S : A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17 : 183-193, 2016 https://doi.org/10.1038/nrm.2016.8
  78. Takahashi K, Yamanaka S : Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 : 663-676, 2006 https://doi.org/10.1016/j.cell.2006.07.024
  79. Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. : Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18 : 587-590, 2016 https://doi.org/10.1016/j.stem.2016.02.016
  80. Telpalo-Carpio S, Aguilar-Yanez J, Gonzalez-Garza M, Cruz-Vega D, Moreno-Cuevas J : iPS cells generation: an overview of techniques and methods. J Stem Cells Regen Med 9 : 2-8, 2013 https://doi.org/10.46582/jsrm.0901002
  81. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. : Embryonic stem cell lines derived from human blastocysts. Science 282 : 1145-1147, 1998 https://doi.org/10.1126/science.282.5391.1145
  82. Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, et al. : Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13 : 382-384, 2013 https://doi.org/10.1016/j.stem.2013.08.003
  83. Wang X, Dai X, Zhang X, Ma C, Li X, Xu T, et al. : 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition. J Biomed Mater Res A 107 : 383-391, 2019 https://doi.org/10.1002/jbm.a.36549
  84. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. : Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7 : 618-630, 2010 https://doi.org/10.1016/j.stem.2010.08.012
  85. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, et al. : Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum Mol Genet 20 : 4530-4539, 2011 https://doi.org/10.1093/hmg/ddr394
  86. Yamanaka S, Li J, Kania G, Elliott S, Wersto RP, Van Eyk J, et al. : Pluripotency of embryonic stem cells. Cell Tissue Res 331 : 5-22, 2008 https://doi.org/10.1007/s00441-007-0520-5
  87. Yang W, Mills JA, Sullivan S, Liu Y, French DL, Gadue P : iPSC Reprogramming from Human Peripheral Blood Using Sendai Virus Mediated Gene Transfer. Cambridge : StemBook, 2008
  88. Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, et al. : Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 29 : 1983-1994, 2011 https://doi.org/10.1002/stem.767
  89. Ye H, Wang Q : Efficient generation of non-integration and feeder-free induced pluripotent stem cells from human peripheral blood cells by Sendai virus. Cell Physiol Biochem 50 : 1318-1331, 2018 https://doi.org/10.1159/000494589
  90. Yoshida Y, Yamanaka S : iPS cells: a source of cardiac regeneration. J Mol Cell Cardiol 50 : 327-332, 2011 https://doi.org/10.1016/j.yjmcc.2010.10.026
  91. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. : Human induced pluripotent stem cells free of vector and transgene sequences. Science 324 : 797-801, 2009 https://doi.org/10.1126/science.1172482
  92. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. : Induced pluripotent stem cell lines derived from human somatic cells. Science 318 : 1917-1920, 2007 https://doi.org/10.1126/science.1151526
  93. Zhang SC, Li XJ, Johnson MA, Pankratz MT : Human embryonic stem cells for brain repair? Philos Trans R Soc Lond B Biol Sci 363 : 87-99, 2008 https://doi.org/10.1098/rstb.2006.2014
  94. Zhang Y, Schmid B, Nikolaisen NK, Rasmussen MA, Aldana BI, Agger M, et al. : Patient iPSC-derived neurons for disease modeling of frontotemporal dementia with mutation in CHMP2B. Stem Cell Reports 8 : 648-658, 2017 https://doi.org/10.1016/j.stemcr.2017.01.012
  95. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, et al. : Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4 : 381-384, 2009 https://doi.org/10.1016/j.stem.2009.04.005
  96. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA : In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455 : 627-632, 2008 https://doi.org/10.1038/nature07314
  97. Zhou Q, Melton DA : Extreme makeover: converting one cell into another. Cell Stem Cell 3 : 382-388, 2008 https://doi.org/10.1016/j.stem.2008.09.015
  98. Zhou Q, Melton DA : Pathways to new beta cells. Cold Spring Harb Symp Quant Biol 73 : 175-181, 2008 https://doi.org/10.1101/sqb.2008.72.002
  99. Zhou W, Freed CR : Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27 : 2667-2674, 2009 https://doi.org/10.1002/stem.201

피인용 문헌

  1. Mini Review; Differentiation of Human Pluripotent Stem Cells into Oocytes vol.15, 2019, https://doi.org/10.2174/1574888x15666200116100121
  2. Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury vol.14, 2020, https://doi.org/10.3389/fncel.2020.594304
  3. Selected Ionotropic Receptors and Voltage-Gated Ion Channels: More Functional Competence for Human Induced Pluripotent Stem Cell (iPSC)-Derived Nociceptors vol.10, pp.6, 2019, https://doi.org/10.3390/brainsci10060344
  4. Potential of transposon-mediated cellular reprogramming towards cell-based therapies vol.12, pp.7, 2020, https://doi.org/10.4252/wjsc.v12.i7.527
  5. Advances in Tissue Engineering for Disc Repair vol.11, pp.4, 2019, https://doi.org/10.3390/app11041919