DOI QR코드

DOI QR Code

친환경 페로브스카이트 태양전지 최신 기술 동향

Recent Research Progress on Eco-Friendly Perovskite Solar Cells

  • 유형렬 (대구경북과학기술원에너지공학전공) ;
  • 최종민 (대구경북과학기술원에너지공학전공)
  • 투고 : 2019.08.08
  • 심사 : 2019.08.12
  • 발행 : 2019.08.31

초록

금속 할로겐 페로브스카이트 (perovskite)는 우수한 전기적, 광학적 특성으로 인해 차세대 태양전지의 핵심 소재로 큰 주목을 받고 있다. 페로브스카이트 태양전지는 등장 이후 전례 없는 단기간 효율 향상을 보이며 현재 24% 이상의 인증된 광전 변환 효율을 달성하였지만, 대부분의 고성능 페로브스카이트 태양전지는 유독성 납 (Pb)을 기반으로 한 페로브스카이트를 사용한 것으로, 향후 상용화를 위해서는 납을 쓰지 않는 친환경 페로브스카이트 개발이 필수적이다. 본 글에서는 비납 페로브스카이트 물질 및 연구 동향에 대해서 소개하고자 한다.

Metal halide perovskite materials are considered as promising semiconducting materials for next-generation solar cells due to their unique electrical and optical properties. Intensive progress in perovskite solar cell yielded a certified power conversion efficiency over 24%. However, most of highly efficient perovskite solar cells required Pb-based perovskite materials, which is a critical obstacle for their commercialization, and development of Pb-free perovskite materials is one of recent urgent issues in this field. In this paper, we will introduce recent research progress on Pb-free perovskite solar cells.

키워드

참고문헌

  1. https://www.nrel.gov/pv/cell-efficiency.html
  2. A. K. Jena, A. Kulkarni and T. Miyasaka, 'Halide Perovskite Photovoltaics: Background, Status, and Future Prospects', Chem. Rev., 119, 3036 (2019). https://doi.org/10.1021/acs.chemrev.8b00539
  3. S. Ruhle, 'Tabulated values of the Shockley-Queisser Limit for Single Junction Solar Cells', Solar Energy, 130, 139 (2016). https://doi.org/10.1016/j.solener.2016.02.015
  4. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, 'Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber', Science, 342, 341 (2013). https://doi.org/10.1126/science.1243982
  5. W.-J. Yin, T. Shi and Y. Yan. 'Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance', Adv. Mater., 26, 4653 (2014). https://doi.org/10.1002/adma.201306281
  6. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, 'Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties' Inorg. Chem., 52, 9019 (2013). https://doi.org/10.1021/ic401215x
  7. Z. Chen, J. J. Wang, Y. Ren, C. Yu and K. Shum, 'Schottky Solar Cells based on $CsSnI_3$ Thin-Films', Appl. Phys. Lett., 101, 093901 (2012). https://doi.org/10.1063/1.4748888
  8. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz and H. J. Snaith, 'Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications', Energy Environ. Sci., 7, 3061 (2014). https://doi.org/10.1039/C4EE01076K
  9. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang and M. G. Kanatzidis, 'Lead-Free Solid-State Organic-Inorganic Halide Perovskite Solar Cells', Nature Photon., 8, 489 (2014). https://doi.org/10.1038/nphoton.2014.82
  10. F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang and M. G. Kanatzidis, 'Solvent-Mediated Crystallization of $CH_3NH_3SnI_3$ Films for Heterojunction Depleted Perovskite Solar Cells', J. Am. Chem. Soc., 137, 11445 (2015). https://doi.org/10.1021/jacs.5b06658
  11. T. M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W. L. Leong, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar and N. Mathews, 'Formamidinium Tin-based Perovskite with Low Eg for Photovoltaic Applications', J. Mater. Chem. A, 3, 14996 (2015). https://doi.org/10.1039/C5TA00190K
  12. S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo, and S. I. Seok, 'Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through $SnF_2$-Pyrazine Complex', J. Am. Chem. Soc., 138, 3974 (2016). https://doi.org/10.1021/jacs.6b00142
  13. K. P. Marshall, M. Walker, R. I. Walton and R. A. Hatton, 'Enhanced Stability and Efficiency in Hole-Transport-Layer-Free $CsSnI_3$ Perovskite Photovoltaics', Nat. Energy, 1, 178 (2016).
  14. T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki and M. G. Kanatzidis, Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-based Perovskite Solar Cells', J. Am. Chem. Soc., 139, 836 (2017). https://doi.org/10.1021/jacs.6b10734
  15. D. H. Cao, C. C. Stoumpos, T. Yokoyama, J. L. Logsdon, T.-B. Song, O. K. Farha, M. R. Wasielewski, J. T. Hupp and M. G. Kanatzidis, 'Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden-Popper $(CH_3(CH_2)_3NH_3)_2(CH_3NH_3)_{n-1}Sn_nI3_{n+1}$ Perovskites', ACS Energy Lett., 2, 982 (2017). https://doi.org/10.1021/acsenergylett.7b00202
  16. Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent and Z. Ning, 'Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance', J. Am. Chem. Soc., 139, 6693 (2017). https://doi.org/10.1021/jacs.7b01815
  17. S. Shao, J. Liu, G. Portale, H.-H. Fang, G. R. Blake, G. H. ten Brink, L. J. A. Koster and M. A. Loi, 'Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency', Adv. Energy Mater., 8, 1702019 (2018). https://doi.org/10.1002/aenm.201702019
  18. C. C. Stoumpos, L. Fraser, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang and M. G. Kanatzidis, 'Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps and Strong Nonlinear Optical Properties', J. Am. Chem. Soc., 137, 6804 (2015). https://doi.org/10.1021/jacs.5b01025
  19. T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews and S. G. Mhaisalkar, 'Lead-Free Germanium Iodide Perovskite Materials for Photovoltaic Applications', J. Mater. Chem. A, 3, 23829 (2015). https://doi.org/10.1039/C5TA05741H
  20. B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo and E. M. J. Johansson, 'Bismuth based Hybrid Perovskites $A_3Bi_2I_9$(A:methylammonium or cesium) for Solar Cell Application', Adv. Mater., 27, 6806 (2015). https://doi.org/10.1002/adma.201501978
  21. R. L. Z. Hoye, R. E. Brandt, A. Osherov, V. Stevanovic, S. D. Stranks, M. W. B. Wilson, H. Kim, A. J. Akey, J. D. Perkins, V. Bulovic, and T. Buonassisi, 'Methylammonium Bismuth Iodide as a Lead-free, Stable Hybrid Organic-Inorganic Solar Absorber', Chem. Eur. J., 22, 2605 (2016). https://doi.org/10.1002/chem.201505055
  22. Z. Zhang, X. Li, X. Xia, Z. Wang, Z. Huang, B. Lei and Y. Gao, 'High-Quality (CH3NH3)3Bi2I9 Film-Based Solar Cells: Pushing Efficiency up to 1.64%', J. Phys. Chem. Lett., 8, 4300 (2017). https://doi.org/10.1021/acs.jpclett.7b01952
  23. B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I. G. Hill, Y. Yan and D. B. Mitzi, 'Thin-Film Preparation and Characterization of Cs3Sb2I9: A Lead-Free Layered Perovskite Semiconductor', Chem. Mater., 27, 5622 (2015). https://doi.org/10.1021/acs.chemmater.5b01989
  24. P. C. Harikesh, H. K. Mulmudi, B. Ghosh, T. W. Goh, Y. T. Teng, K. Thirumal, M. Lockrey, K. Weber, T. M. Koh, S. Li, S. Mhaisalkar and N. Mathews, 'Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics', Chem. Mater., 28, 7496 (2016). https://doi.org/10.1021/acs.chemmater.6b03310
  25. F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, H. Han, L. Zhang and Y. Zhou, 'Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells', J. Am. Chem. Soc., 140, 1019 (2018). https://doi.org/10.1021/jacs.7b10739
  26. A. H. Slavney, T. Hu, A. M. Lindenberg and H. I. Karunadasa, 'A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications', J. Am. Chem. Soc., 138, 2138 (2016). https://doi.org/10.1021/jacs.5b13294