References
- Slavin, J.L., Lloyd, B.: Health Benefits of fruits and vegetables. Adv. Nutr., 3, 506-516 (2012). https://doi.org/10.3945/an.112.002154
- Sivapalasingam, S., Friedman, C.R., Cohen, L., Tauxe, R.V.: Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Prot., 67, 2342-2353 (2004). https://doi.org/10.4315/0362-028X-67.10.2342
- Golberg, D., Kroupitski, Y., Belausov, E., Pinto, R., Sela, S.: Salmonella Typhimurium internalization is variable in leafy vegetables and fresh herbs. Int. J. Food Microbiol.145, 250-257 (2011). https://doi.org/10.1016/j.ijfoodmicro.2010.12.031
- Kroupitski, Y., Pinto, R., Brandl, M.T., Belausov, E., Sela, S.: Interactions of Salmonella enterica with lettuce leaves. J. Appl. Microbiol. 106, 1876-1885 (2009). https://doi.org/10.1111/j.1365-2672.2009.04152.x
- Tsen, H.Y. (2002). Molecular typing of Salmonella enterica serovars Typhimurium, Typhi, and Enteritidis isolated in Taiwan. J. Drug Anal., 10, 242-251 (2002).
- Lim, Y.H., Hirose, K., Izumiya, H., Arakawa, E., Takahashi, H., Terajima, J., Itoh, K, Tamura, K., Kim, S., Watanabe, H.: Multiplex polymerase chain reaction assay for selective detection of Salmonella enterica Serovar Typhimurium. Japanes J. Infectious Dis., 56, 151-155 (2003).
- Anonymous: National Salmonella Typhimurium Outbreak linked to lettuce retrieved from http://www.foodpoisonjournal.com/foodborne-illnessoutbreaks/national-salmonellatyphimurium-outbreak-linked-to-lettuce/ (2009).
- Chang, J.M., Fang, T.J.: Survival of Escherichia coli O157:H7 and Salmonella enteric serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E. coli O157:H7. Food Microbiol. 24, 745-751 (2007). https://doi.org/10.1016/j.fm.2007.03.005
- Piyasena, P., Mohareb, E., McKellar, R.C.: Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 87, 207-216 (2003). https://doi.org/10.1016/S0168-1605(03)00075-8
- Ross, T., Dalgaard, P., Tienungoon, S.: Predictive modeling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol. 62, 231-245 (2000). https://doi.org/10.1016/S0168-1605(00)00340-8
- Tomac, A., Mascheroni, R.H., Yeannes, M.I.: Modelling the effect of gamma irradiation on the inactivation and growth kinetics of psychrotrophic bacteria in squid rings during refrigerated storage. J. Food Eng., 117, 211-216 (2013). https://doi.org/10.1016/j.jfoodeng.2013.02.021
- Gibson, A.M., Bratchell, N., Roberts, T.A.: Predicting microbial growth: Growth response of Salmonella in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int. J. Food Microbiol. 6, 155-178 (1988). https://doi.org/10.1016/0168-1605(88)90051-7
- Huang, L.: Thermal inactivation of Listeria monocytogenes in ground beef under isothermal and dynamic temperature conditions. J. Food Eng., 90, 380-387 (2009). https://doi.org/10.1016/j.jfoodeng.2008.07.011
- Huang, L.: A comprehensive data analysis tool for predictive microbiology. Int. J. Food Microbiol., 171, 100-107 (2013). https://doi.org/10.1016/j.ijfoodmicro.2013.11.019
- Park, S.Y., Seo, K.Y., Ha, S.D.: A response surface model based on absorbance data for the growth rates of Salmonella enterica Serovar Typhimurium as a function of temperature, NaCl, and pH. J. Microbiol. Biotechnol. 17, 644-649 (2007).
- Kim, B.Y., Choi, S.Y., Seo, K.Y., Ha, S.D.: Temperature dependent growth characteristics and a predictive mathematical model of Salmonella enterica serovar Typhimurium in kimbab. J. Korean Sco. Appl. Biol. Chem., 54, 454-459 (2011). https://doi.org/10.3839/jksabc.2011.070
- Oh, S.R., Kang, I., Oh, M.H., Ha, S.D.: Inhibitory effect of chlorine and ultraviolet radiation on growth of Listeria monocytogenes in chicken breast and development of predictive models. Poultry Sci., 93, 200-207 (2014). https://doi.org/10.3382/ps.2013-03394
- Yoon, K.S., Min, K.J., Jung, Y.J., Kwon, K.Y., Lee, J.K., Oh, S.W.: A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food Microbiol., 25, 635-641 (2008). https://doi.org/10.1016/j.fm.2008.04.007
-
Jung, Y.J., Min, K.J., Yoon, K.S.: Responses of acid-stressed Salmonella Typhimurium in broth and chicken patties to subsequent antimicrobial stress with
$\varepsilon$ -polylysine and combined potassium lactate and sodium diacetate. Food Microbiol., 26, 467-474 (2009). https://doi.org/10.1016/j.fm.2009.02.007 - Sutherland, J.P., Bay, A.J., Roberts, T.A.: Predictive modeling of growth of Staphylococcus aureus: The effects of temperature, pH, and sodium chloride. Int. J. Food Microbiol., 21, 217-236 (1994). https://doi.org/10.1016/0168-1605(94)90029-9
- Adair, C., Kilsby, D.C., Whittal, P.T.: Comparison of the school field (non-linear Arrhenius) model and the square root model for predicting bacterial growth in foods. Food Microbiol., 6, 7-18 (1989). https://doi.org/10.1016/S0740-0020(89)80033-4
- Lebert, I., Robeles-Olvera, V., Lebert, A.: Application of polynomial models to predict growth of mixed cultures of Pseudomonas spp. and Listeria in meat. Int. J. Food Microbiol. 61, 27-39 (2000). https://doi.org/10.1016/S0168-1605(00)00359-7
- Ross, T., Dalgarrd, P., Tienungoon, S.: Predictive modeling of the growth and survival of Listera in fishery products. Int. J. Food Microbiol., 62, 231-245 (2000). https://doi.org/10.1016/S0168-1605(00)00340-8
- Carrasco, E., Garcia-Gimeno, R., Seselovsky, R., Valero, A., Perez, F., Zurera, G.: Predictive model of Listeria monocytogenes growth rate under different temperatures and acids. Food Sci. Technol. Int., 12, 47-56 (2006). https://doi.org/10.1177/1082013206062234