DOI QR코드

DOI QR Code

Application of Nanoparticles in Food Preservation and Food Processing

  • Prakash, J. (Department of Nanotechnology, SRM University) ;
  • Vignesh, K. (Department of Physics, SRM University) ;
  • Anusuya, T. (Department of Nanotechnology, SRM University) ;
  • Kalaivani, T. (Department of Physics, SRM University) ;
  • Ramachandran, C. (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Sudha, Rani R. (School of Food Technology and Biotechnology, Kyungpook National University) ;
  • Rubab, Momna (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Khan, Imran (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Elahi, Fazle (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Oh, Deog-Hwan (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • DevanandVenkatasubbu, G. (Department of Nanotechnology, SRM University)
  • Received : 2019.02.04
  • Accepted : 2019.07.04
  • Published : 2019.08.30

Abstract

This study focuses on the role of nanotechnology in the field of food industries. Bioactive components with antimicrobial activity against food pathogens are encapsulated into nanoparticles (NPs) to improve and extend their efficiency in food preservation. However, these NPs should be biocompatible and nontoxic for humans. Advancement in this field has resulted in the development of NPs for food packaging in some industries. The most commonly used group of NPs in the food industry is metal oxide. As metal oxide NPs such as zinc oxide and titanium dioxide exhibit antimicrobial activity in food materials, the NPs can be used for food preservation with enhanced functional properties. The application and effects of nanotechnology in correlation with the nutritional and sensory properties of foods were briefly discussed with a few insights into safety regulations on nano-based food formulation and preservation.

본 리뷰 논문은 식품 산업에서 나노 기술의 활용에 관한 보고이다. 식품 병원균에 대한 항균 활성을 갖는 생리활성 성분은 식품 보존시 효율성을 향상시키고 보존성을 증진시키기 위해 나노입자(NPs)로 캡슐화된다. 그러나, 이러한 NPs는 인간에게 생체 적합성과 무독성을 지녀야 된다. 식품 보존분야의 발전은 일부 산업 분야에서 식품 포장용 NPs의 개발을 가져왔다. 식품 산업 분야에서 가장 일반적으로 사용되는 NPs 그룹은 금속 산화물이다. 산화 아연과 이산화 티타늄 같은 금속 산화물 NPs는 식품 재료에서 항균 활성을 나타내기 때문에, NPs는 강화된 기능적 특성으로 식품 보존에 사용될 수 있다. 식품 영양과 관능적 특성과 관련된 나노 기술의 적용은 나노 기반 식품 제조 및 보존에 관한 안전규제를 중심으로 간략하게 정리하였다.

Keywords

References

  1. Taniguchi, N.: On the basic concept of 'nano-technology'. In Proceedings of International Conference Production Engineering, Tokyo, Part II, Japan Society of Precision Engineering (1974).
  2. Busquets, R., Mbundi, L.: Concepts of Nanotechnology. Emerg. Nanotechnol. Food Sci., 1-9 (2017).
  3. Bhattacharyya, D., Singh, S., Satnalika, N., Khandelwal, A., Jeon, S.H.: Nanotechnology, Big things from a Tiny World: a Review. Nanotechnol., 2, 29-38 (2009).
  4. Logothetidis, S. (Ed.).: Nanostructured materials and their applications. Springer Science Heidelberg, Germany, (2012).
  5. Oyewumi, M.O., Kumar, A., Cui, Z.: Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines, 9(9), 1095-1107 (2010). https://doi.org/10.1586/erv.10.89
  6. Alagarasi, A., Viswanathan, B.: Introduction to nanomaterials (ed.), Nanomaterials, Narosa Publishing House, India, (2009).
  7. Ali, S.M., Yousef, N.M.H., Nafady, N.A.: Application of biosynthesized silver nanoparticles for the control of land snail Eobaniavermiculata and some plant pathogenic fungi. J. Nanomater., 10, 1155-218904 (2015).
  8. Arfat, Y.A., Ejaz, M., Jacob, H., Ahmed, J.: Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydr. Polym., 157, 65-71 (2017). https://doi.org/10.1016/j.carbpol.2016.09.069
  9. Akhtar, M.S., Panwar, J., Yun, Y.S.: Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Suatain Chem Eng, 1(6), 591-602 (2013). https://doi.org/10.1021/sc300118u
  10. Reis, C.P., Neufeld, R.J., Ribeiro, A.J., Veiga, F.: Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2(1), 8-21 (2006). https://doi.org/10.1016/j.nano.2005.12.003
  11. Byrappa, K., Adschiri, T.: Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater., 53, 117-166 (2007). https://doi.org/10.1016/j.pcrysgrow.2007.04.001
  12. Brinker C.J., Scherer, G.W.: Sol - gel science: The Physics and the chemistry of sol-gel processing. Academic Press, Inc. London (2013).
  13. Betke, A., Kickelbick, G.: Bottom-up, wet chemical technique for the continuous synthesis of inorganic nanoparticles. Inorganics, 2, 1-15 (2014). https://doi.org/10.3390/inorganics2010001
  14. Aslan, B., Ozpolat, B., Sood. A.K., Lopez-Berestein, G.: Nanotechnology in cancer therapy. J. Drug Target., 21, 904-913 (2013). https://doi.org/10.3109/1061186X.2013.837469
  15. Emeje, M.O., Obidike, I.C., Akpabio, E.I., Ofoefule, S.I.: Nanotechnology in drug selivery. In Recent advances in novel drug carrier system. Intech, (2012).
  16. Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., Bannerjee, S.K.: Drug delivery systems: An updated review. Int J Pharm Investig, 2(1), 2-11 (2012). https://doi.org/10.4103/2230-973X.96920
  17. Frey, N.A., Peng, S., Cheng, K., Sun, S.: Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev, 38(9), 2532-2542 (2009). https://doi.org/10.1039/b815548h
  18. Chowdhuri, A.R., Bhattacharya, D., Sahu, S.K.: Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans, 45(7), 2963-2973 (2016). https://doi.org/10.1039/C5DT03736K
  19. Morais, M.G.D., Martins, V.G., Steffens, D., Pranke, P., Costa1, J.A.V.D.: Biological Applications of Nanobiotechnology. J. Nanosci. Nanotechnol.,14, 1007-1017 (2014). https://doi.org/10.1166/jnn.2014.8748
  20. Slootweg, P.J., Hordijk, G.J., Schade, Y., van Es, R.J., Koole, R.: Treatment failure and margin status in head and neck cancer. A critical view on the potential value of molecular pathology. Oral oncology, 38(5), 500-503 (2002). https://doi.org/10.1016/S1368-8375(01)00092-6
  21. Cho, K., Wang, X.U., Nie, S., Shin, D.M.: Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 14(5), 1310-1316 (2008). https://doi.org/10.1158/1078-0432.CCR-07-1441
  22. Jana, N.R., Gearheart, L., Murphy, C.J.: Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B, 105(19), 4065-4067 (2001). https://doi.org/10.1021/jp0107964
  23. Mohanta, Y.K., Panda, S.K., Bastia, A.K., Mohanta, T.K.: Biosynthesis of silver nanoparticles from protiumserratum and investigation of their potential impacts on food safety and control. Front. Microbiol.,6, 626 (2017).
  24. Chauhan, N., Tyagi, A.K., Kumar P., Malik, A.: Antibacterial Potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front. Microbiol.,7, 1748 (2017).
  25. Mishra, A., Kumari, M., Pandey, S., Chaudhry, V., Gupta, K. C., Nautiyal, C.S.: Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour. Technol., 166, 235-242 (2014). https://doi.org/10.1016/j.biortech.2014.04.085
  26. Khosravi-Darani, K., Pardakhty, A., Honarpisheh, H., Rao, V.M., Mozafari, M.R.: The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron, 38, 804-818 (2007). https://doi.org/10.1016/j.micron.2007.06.009
  27. Kubiak, P., Froschl, T., Husing, N., Hormann, U., Kaiser, U., Schiller, R., Weiss, C.K., Landfester, K., Wohlfahrt-Mehrens, M.: $TiO_2$ anatase nanoparticle networks: Synthesis, structure, and electrochemical performance. Small, 7, 1690-1696 (2011). https://doi.org/10.1002/smll.201001943
  28. Holley, C.: Nanotechnology and packaging. secure protection for the future. VerpackungsRundschau., 56, 53-56 (2005).
  29. Pawar, A.: Nanotechnology: The multidisciplinary technology-A review. J. Pure Appl. Sci. Technol., 6,11-16 (2016).
  30. Brody, A.L.: Nano and food packaging technologies converge. Food Technol., 60, 92-94 (2006).
  31. Lagaron, J.M., Cabedo, L., Cava, D., Feijoo, J.L., Gavara, R., Gimenez, E.: Improving packaged food quality and safety. Part 2: Nanocomposites. Food Additiv. Contam.,23, 994-998 (2005).
  32. Kotov, N.A.: Layer-by-layer assembly of nanoparticles and nanocolloids: Intermolecular interactions structure and materials perspective. In Multilayer Thin Films: Sequential assembly of nanocomposite materials, (Decher, G. and Schlenoff, J.B. eds.) Strauss Offsetdruck GmbH, Morlenbach, Germany, pp. 207-243 (2003).
  33. Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T.W., Rao, A.M., Sun, Y.P.: Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano. Lett., 2, 311-314 (2000). https://doi.org/10.1021/nl010095i
  34. Kim, K.D., Han, D.N., Lee, J.B., Kim, H.T.: Formation and characterization of Ag- deposited $TiO_2$ nanoparticles by chemical reduction method. Scripta Mater., 54, 143-146 (2006). https://doi.org/10.1016/j.scriptamat.2005.09.054
  35. Krishna, V., Pumprueg, S., Lee, S.H., Zhoa, J., Sigmund, W., Koopman, B., Moudgil, B.M.: Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes. Proc. Safety Environ. Prot. 83, 393-397 (2005). https://doi.org/10.1205/psep.04387
  36. Lee, S.B., Martin, C.R.: Electromodulated molecular transport in gold nanotube membranes. J. Am. Chem. Soc., 124, 11850-11851 (2002). https://doi.org/10.1021/ja027494f
  37. Rouhi, M.: Novel chiral separation tool. Chem. Eng. News, 80, 13-13 (2002).
  38. Tayel, A.A., El-Tras, W.F., Moussa, S., El-Baz, A.F., Hoda, M., Salem, M.F., Brimer, L.: antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Safety., 31, 211-218 (2011). https://doi.org/10.1111/j.1745-4565.2010.00287.x
  39. Nishiyama, Y.: Structure and properties of the cellulose microfibril. J. Wood Sci., 55, 241-249 (2009). https://doi.org/10.1007/s10086-009-1029-1
  40. Munish, G., Paramjeet, S., Shveta, R.: Optimizing physical layer energy consumption for reliable communication in multi-hop wireless sensor networks. Ind. J. Sci. Technol., 8, 1-7 (2015). https://doi.org/10.17485/ijst/2015/v8is8/64705
  41. De Azeredo, H.M.: Nanocomposites for food packaging applications. Food Res. Int.,42, 1240-1253 (2009). https://doi.org/10.1016/j.foodres.2009.03.019
  42. Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., Ashokkumar, S.: Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim. Acta. Mol. Biomol. Spectrosc., 143, 158-164 (2015). https://doi.org/10.1016/j.saa.2015.02.011
  43. Rajiv, P., Rajeshwari, S., Venckatesh, R.: Bio-fabrication of zinc oxide nanoparticles using leaf extract of Partheniumhysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc.,12, 384-387 (2013).
  44. Bhumi, G., Savithramma, N.: Biological synthesis of zinc oxide nanoparticles from Catharanthusroseus (l.) G. Don. leaf extract and validation for antibacterial activity. Int. J. Drug Dev. Res., 6, 208-214 (2014).
  45. Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E., Margel, S.: Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A. Physicochem. and Eng. Aspects., 374, 1-8 (2011). https://doi.org/10.1016/j.colsurfa.2010.10.015
  46. Xie, Y., He, Y., Irwin, P.L., Jin, T., Shi, X.: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 77, 2325-2331 (2011). https://doi.org/10.1128/AEM.02149-10
  47. He, L., Liu, Y., Mustapha, A., Lin, M.: Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicilliumexpansum. Microbiol. Res., 166, 207-215 (2011). https://doi.org/10.1016/j.micres.2010.03.003
  48. Long, T.N., Saleh, R., Tilton, R., Lowry, G., Veronesi, B.: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ. Sci. Technol., 40, 4346-4352 (2006). https://doi.org/10.1021/es060589n
  49. Wang, B., Feng, W., Wang, M., Wang, T., Gu, Y., Zhu, M., Ouyang, H., Shi, J., Zhang, F., Zhao, Y., Chai, Z., Wang, H., Wang, J.: A cute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J. Nanopart. Res., 10, 263-276 (2007).
  50. Brunner, T., Piusmanser, P., Spohn, P., Grass, R., Limbach, L., Ruinink, A.B., Stark, W.: In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 40, 4374-4381 (2006). https://doi.org/10.1021/es052069i
  51. Madureira, A.R., Pereira, A., Pintado, M.: Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr. Polym., 130, 429-439 (2015). https://doi.org/10.1016/j.carbpol.2015.05.030
  52. Chen, M., Mikecz, A.V.: Formation of nucleoplasmic protein aggregates impairs nuclear function in response to $SiO_2$nanoparticles.Experiment. Cell Res., 305, 51-62 (2005). https://doi.org/10.1016/j.yexcr.2004.12.021
  53. Zou, Y., Lee, H.Y., Seo, Y.C., Ahn, J.: Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against Foodborne Pathogens. J. Food Sci., 77, M165-M170 (2012). https://doi.org/10.1111/j.1750-3841.2011.02580.x
  54. Prombutara, P., Kulwatthanasal, Y., Supaka, N., Sramala, I., Chareonpornwattana, S.: Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control., 24, 184-190 (2012). https://doi.org/10.1016/j.foodcont.2011.09.025
  55. Ravichandran, M., Hettiarachchy, N.S., Ganesh, V., Ricke, S.C., Singh, S.: Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium in broth and chicken meat system. J. Food Safety, 31, 462-471 (2011). https://doi.org/10.1111/j.1745-4565.2011.00322.x
  56. Shah, B., Davidson, P.M., Zhong, Q.: Nanodispersed eugenol has improved antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes in bovine milk. Int. J. Food Microbiol., 161, 53-59 (2013). https://doi.org/10.1016/j.ijfoodmicro.2012.11.020
  57. Smolander, M., Chaudhry, Q.: Nanotechnologies in food packaging. Nanotechnol. Food, 14, 86-101 (2010). https://doi.org/10.1039/9781847559883-00086
  58. Avella, M., De Vlieger, J.J., Errico, M.E., Fischer, S., Vacca, P., Volpe, M.G.: Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem., 93, 467-474 (2005). https://doi.org/10.1016/j.foodchem.2004.10.024
  59. Alfadul, S.M., Elneshwy, A.A.: Use of nanotechnology in food processing, packaging, and safety-review. Afr. J. Food Agri. Nutr. Dev., 10, 2719-2739 (2010).
  60. Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., Watkins, R.: Applications and implications of nanotechnologies for the food sector. Food Additi. Contam., 25, 241-258 (2008). https://doi.org/10.1080/02652030701744538
  61. Ariga, K., Hill, J.P., Ji, Q.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phy. Chem. Chem. Physics, 9(19), 2319-2340 (2007). https://doi.org/10.1039/b700410a
  62. Lee, J., Kim, J., Jeong, M., Lee, H., Goh, U., Kim, H., Park, J. H.: Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration. Nano letters, 15(5), 2938-2944 (2015). https://doi.org/10.1021/nl5047494
  63. Bajpai, V.K., Kamle, M., Shukla, S., Mahato, D.K., Chandra, P., Hwang, S.K., Han, Y.K.: Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal., 26(4), 1201-1214 (2018). https://doi.org/10.1016/j.jfda.2018.06.011
  64. Su, X.L., Li, Y.: Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia c oli O157: H7. Analytical Chem., 76(16), 4806-4810 (2004). https://doi.org/10.1021/ac049442+
  65. Schoning, M.J., Jacobs, M., Muck, A., Knobbe, D.T., Wang, J., Chatrathi, M., Spillmann, S.: Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection. Sensors and Actuators B: Chemical, 108(1-2), 688-694 (2005). https://doi.org/10.1016/j.snb.2004.11.032
  66. Wang, L., Wei, Q., Wu, C., Hu, Z., Ji, J., Wang, P.: The Escherichia coli O157: H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chinese Science Bulletin, 53(8), 1175-1184 (2008).
  67. Velmurugan, P., Cho, M., Lim, S.S., Seo, S.K., Myung, H., Bang, K.S., Oh, B.T.: Phytosynthesis of silver nanoparticles by Prunusyedoensis leaf extract and their antimicrobial activity. Materials Letters, 138, 272-275 (2015). https://doi.org/10.1016/j.matlet.2014.09.136