References
- Taniguchi, N.: On the basic concept of 'nano-technology'. In Proceedings of International Conference Production Engineering, Tokyo, Part II, Japan Society of Precision Engineering (1974).
- Busquets, R., Mbundi, L.: Concepts of Nanotechnology. Emerg. Nanotechnol. Food Sci., 1-9 (2017).
- Bhattacharyya, D., Singh, S., Satnalika, N., Khandelwal, A., Jeon, S.H.: Nanotechnology, Big things from a Tiny World: a Review. Nanotechnol., 2, 29-38 (2009).
- Logothetidis, S. (Ed.).: Nanostructured materials and their applications. Springer Science Heidelberg, Germany, (2012).
- Oyewumi, M.O., Kumar, A., Cui, Z.: Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines, 9(9), 1095-1107 (2010). https://doi.org/10.1586/erv.10.89
- Alagarasi, A., Viswanathan, B.: Introduction to nanomaterials (ed.), Nanomaterials, Narosa Publishing House, India, (2009).
- Ali, S.M., Yousef, N.M.H., Nafady, N.A.: Application of biosynthesized silver nanoparticles for the control of land snail Eobaniavermiculata and some plant pathogenic fungi. J. Nanomater., 10, 1155-218904 (2015).
- Arfat, Y.A., Ejaz, M., Jacob, H., Ahmed, J.: Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydr. Polym., 157, 65-71 (2017). https://doi.org/10.1016/j.carbpol.2016.09.069
- Akhtar, M.S., Panwar, J., Yun, Y.S.: Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Suatain Chem Eng, 1(6), 591-602 (2013). https://doi.org/10.1021/sc300118u
- Reis, C.P., Neufeld, R.J., Ribeiro, A.J., Veiga, F.: Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2(1), 8-21 (2006). https://doi.org/10.1016/j.nano.2005.12.003
- Byrappa, K., Adschiri, T.: Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater., 53, 117-166 (2007). https://doi.org/10.1016/j.pcrysgrow.2007.04.001
- Brinker C.J., Scherer, G.W.: Sol - gel science: The Physics and the chemistry of sol-gel processing. Academic Press, Inc. London (2013).
- Betke, A., Kickelbick, G.: Bottom-up, wet chemical technique for the continuous synthesis of inorganic nanoparticles. Inorganics, 2, 1-15 (2014). https://doi.org/10.3390/inorganics2010001
- Aslan, B., Ozpolat, B., Sood. A.K., Lopez-Berestein, G.: Nanotechnology in cancer therapy. J. Drug Target., 21, 904-913 (2013). https://doi.org/10.3109/1061186X.2013.837469
- Emeje, M.O., Obidike, I.C., Akpabio, E.I., Ofoefule, S.I.: Nanotechnology in drug selivery. In Recent advances in novel drug carrier system. Intech, (2012).
- Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., Bannerjee, S.K.: Drug delivery systems: An updated review. Int J Pharm Investig, 2(1), 2-11 (2012). https://doi.org/10.4103/2230-973X.96920
- Frey, N.A., Peng, S., Cheng, K., Sun, S.: Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev, 38(9), 2532-2542 (2009). https://doi.org/10.1039/b815548h
- Chowdhuri, A.R., Bhattacharya, D., Sahu, S.K.: Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans, 45(7), 2963-2973 (2016). https://doi.org/10.1039/C5DT03736K
- Morais, M.G.D., Martins, V.G., Steffens, D., Pranke, P., Costa1, J.A.V.D.: Biological Applications of Nanobiotechnology. J. Nanosci. Nanotechnol.,14, 1007-1017 (2014). https://doi.org/10.1166/jnn.2014.8748
- Slootweg, P.J., Hordijk, G.J., Schade, Y., van Es, R.J., Koole, R.: Treatment failure and margin status in head and neck cancer. A critical view on the potential value of molecular pathology. Oral oncology, 38(5), 500-503 (2002). https://doi.org/10.1016/S1368-8375(01)00092-6
- Cho, K., Wang, X.U., Nie, S., Shin, D.M.: Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 14(5), 1310-1316 (2008). https://doi.org/10.1158/1078-0432.CCR-07-1441
- Jana, N.R., Gearheart, L., Murphy, C.J.: Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B, 105(19), 4065-4067 (2001). https://doi.org/10.1021/jp0107964
- Mohanta, Y.K., Panda, S.K., Bastia, A.K., Mohanta, T.K.: Biosynthesis of silver nanoparticles from protiumserratum and investigation of their potential impacts on food safety and control. Front. Microbiol.,6, 626 (2017).
- Chauhan, N., Tyagi, A.K., Kumar P., Malik, A.: Antibacterial Potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front. Microbiol.,7, 1748 (2017).
- Mishra, A., Kumari, M., Pandey, S., Chaudhry, V., Gupta, K. C., Nautiyal, C.S.: Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour. Technol., 166, 235-242 (2014). https://doi.org/10.1016/j.biortech.2014.04.085
- Khosravi-Darani, K., Pardakhty, A., Honarpisheh, H., Rao, V.M., Mozafari, M.R.: The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron, 38, 804-818 (2007). https://doi.org/10.1016/j.micron.2007.06.009
-
Kubiak, P., Froschl, T., Husing, N., Hormann, U., Kaiser, U., Schiller, R., Weiss, C.K., Landfester, K., Wohlfahrt-Mehrens, M.:
$TiO_2$ anatase nanoparticle networks: Synthesis, structure, and electrochemical performance. Small, 7, 1690-1696 (2011). https://doi.org/10.1002/smll.201001943 - Holley, C.: Nanotechnology and packaging. secure protection for the future. VerpackungsRundschau., 56, 53-56 (2005).
- Pawar, A.: Nanotechnology: The multidisciplinary technology-A review. J. Pure Appl. Sci. Technol., 6,11-16 (2016).
- Brody, A.L.: Nano and food packaging technologies converge. Food Technol., 60, 92-94 (2006).
- Lagaron, J.M., Cabedo, L., Cava, D., Feijoo, J.L., Gavara, R., Gimenez, E.: Improving packaged food quality and safety. Part 2: Nanocomposites. Food Additiv. Contam.,23, 994-998 (2005).
- Kotov, N.A.: Layer-by-layer assembly of nanoparticles and nanocolloids: Intermolecular interactions structure and materials perspective. In Multilayer Thin Films: Sequential assembly of nanocomposite materials, (Decher, G. and Schlenoff, J.B. eds.) Strauss Offsetdruck GmbH, Morlenbach, Germany, pp. 207-243 (2003).
- Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T.W., Rao, A.M., Sun, Y.P.: Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano. Lett., 2, 311-314 (2000). https://doi.org/10.1021/nl010095i
-
Kim, K.D., Han, D.N., Lee, J.B., Kim, H.T.: Formation and characterization of Ag- deposited
$TiO_2$ nanoparticles by chemical reduction method. Scripta Mater., 54, 143-146 (2006). https://doi.org/10.1016/j.scriptamat.2005.09.054 - Krishna, V., Pumprueg, S., Lee, S.H., Zhoa, J., Sigmund, W., Koopman, B., Moudgil, B.M.: Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes. Proc. Safety Environ. Prot. 83, 393-397 (2005). https://doi.org/10.1205/psep.04387
- Lee, S.B., Martin, C.R.: Electromodulated molecular transport in gold nanotube membranes. J. Am. Chem. Soc., 124, 11850-11851 (2002). https://doi.org/10.1021/ja027494f
- Rouhi, M.: Novel chiral separation tool. Chem. Eng. News, 80, 13-13 (2002).
- Tayel, A.A., El-Tras, W.F., Moussa, S., El-Baz, A.F., Hoda, M., Salem, M.F., Brimer, L.: antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Safety., 31, 211-218 (2011). https://doi.org/10.1111/j.1745-4565.2010.00287.x
- Nishiyama, Y.: Structure and properties of the cellulose microfibril. J. Wood Sci., 55, 241-249 (2009). https://doi.org/10.1007/s10086-009-1029-1
- Munish, G., Paramjeet, S., Shveta, R.: Optimizing physical layer energy consumption for reliable communication in multi-hop wireless sensor networks. Ind. J. Sci. Technol., 8, 1-7 (2015). https://doi.org/10.17485/ijst/2015/v8is8/64705
- De Azeredo, H.M.: Nanocomposites for food packaging applications. Food Res. Int.,42, 1240-1253 (2009). https://doi.org/10.1016/j.foodres.2009.03.019
- Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., Ashokkumar, S.: Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim. Acta. Mol. Biomol. Spectrosc., 143, 158-164 (2015). https://doi.org/10.1016/j.saa.2015.02.011
- Rajiv, P., Rajeshwari, S., Venckatesh, R.: Bio-fabrication of zinc oxide nanoparticles using leaf extract of Partheniumhysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc.,12, 384-387 (2013).
- Bhumi, G., Savithramma, N.: Biological synthesis of zinc oxide nanoparticles from Catharanthusroseus (l.) G. Don. leaf extract and validation for antibacterial activity. Int. J. Drug Dev. Res., 6, 208-214 (2014).
- Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E., Margel, S.: Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A. Physicochem. and Eng. Aspects., 374, 1-8 (2011). https://doi.org/10.1016/j.colsurfa.2010.10.015
- Xie, Y., He, Y., Irwin, P.L., Jin, T., Shi, X.: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 77, 2325-2331 (2011). https://doi.org/10.1128/AEM.02149-10
- He, L., Liu, Y., Mustapha, A., Lin, M.: Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicilliumexpansum. Microbiol. Res., 166, 207-215 (2011). https://doi.org/10.1016/j.micres.2010.03.003
- Long, T.N., Saleh, R., Tilton, R., Lowry, G., Veronesi, B.: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ. Sci. Technol., 40, 4346-4352 (2006). https://doi.org/10.1021/es060589n
- Wang, B., Feng, W., Wang, M., Wang, T., Gu, Y., Zhu, M., Ouyang, H., Shi, J., Zhang, F., Zhao, Y., Chai, Z., Wang, H., Wang, J.: A cute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J. Nanopart. Res., 10, 263-276 (2007).
- Brunner, T., Piusmanser, P., Spohn, P., Grass, R., Limbach, L., Ruinink, A.B., Stark, W.: In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 40, 4374-4381 (2006). https://doi.org/10.1021/es052069i
- Madureira, A.R., Pereira, A., Pintado, M.: Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr. Polym., 130, 429-439 (2015). https://doi.org/10.1016/j.carbpol.2015.05.030
-
Chen, M., Mikecz, A.V.: Formation of nucleoplasmic protein aggregates impairs nuclear function in response to
$SiO_2$ nanoparticles.Experiment. Cell Res., 305, 51-62 (2005). https://doi.org/10.1016/j.yexcr.2004.12.021 - Zou, Y., Lee, H.Y., Seo, Y.C., Ahn, J.: Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against Foodborne Pathogens. J. Food Sci., 77, M165-M170 (2012). https://doi.org/10.1111/j.1750-3841.2011.02580.x
- Prombutara, P., Kulwatthanasal, Y., Supaka, N., Sramala, I., Chareonpornwattana, S.: Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control., 24, 184-190 (2012). https://doi.org/10.1016/j.foodcont.2011.09.025
- Ravichandran, M., Hettiarachchy, N.S., Ganesh, V., Ricke, S.C., Singh, S.: Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium in broth and chicken meat system. J. Food Safety, 31, 462-471 (2011). https://doi.org/10.1111/j.1745-4565.2011.00322.x
- Shah, B., Davidson, P.M., Zhong, Q.: Nanodispersed eugenol has improved antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes in bovine milk. Int. J. Food Microbiol., 161, 53-59 (2013). https://doi.org/10.1016/j.ijfoodmicro.2012.11.020
- Smolander, M., Chaudhry, Q.: Nanotechnologies in food packaging. Nanotechnol. Food, 14, 86-101 (2010). https://doi.org/10.1039/9781847559883-00086
- Avella, M., De Vlieger, J.J., Errico, M.E., Fischer, S., Vacca, P., Volpe, M.G.: Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem., 93, 467-474 (2005). https://doi.org/10.1016/j.foodchem.2004.10.024
- Alfadul, S.M., Elneshwy, A.A.: Use of nanotechnology in food processing, packaging, and safety-review. Afr. J. Food Agri. Nutr. Dev., 10, 2719-2739 (2010).
- Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., Watkins, R.: Applications and implications of nanotechnologies for the food sector. Food Additi. Contam., 25, 241-258 (2008). https://doi.org/10.1080/02652030701744538
- Ariga, K., Hill, J.P., Ji, Q.: Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phy. Chem. Chem. Physics, 9(19), 2319-2340 (2007). https://doi.org/10.1039/b700410a
- Lee, J., Kim, J., Jeong, M., Lee, H., Goh, U., Kim, H., Park, J. H.: Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration. Nano letters, 15(5), 2938-2944 (2015). https://doi.org/10.1021/nl5047494
- Bajpai, V.K., Kamle, M., Shukla, S., Mahato, D.K., Chandra, P., Hwang, S.K., Han, Y.K.: Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal., 26(4), 1201-1214 (2018). https://doi.org/10.1016/j.jfda.2018.06.011
- Su, X.L., Li, Y.: Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia c oli O157: H7. Analytical Chem., 76(16), 4806-4810 (2004). https://doi.org/10.1021/ac049442+
- Schoning, M.J., Jacobs, M., Muck, A., Knobbe, D.T., Wang, J., Chatrathi, M., Spillmann, S.: Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection. Sensors and Actuators B: Chemical, 108(1-2), 688-694 (2005). https://doi.org/10.1016/j.snb.2004.11.032
- Wang, L., Wei, Q., Wu, C., Hu, Z., Ji, J., Wang, P.: The Escherichia coli O157: H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chinese Science Bulletin, 53(8), 1175-1184 (2008).
- Velmurugan, P., Cho, M., Lim, S.S., Seo, S.K., Myung, H., Bang, K.S., Oh, B.T.: Phytosynthesis of silver nanoparticles by Prunusyedoensis leaf extract and their antimicrobial activity. Materials Letters, 138, 272-275 (2015). https://doi.org/10.1016/j.matlet.2014.09.136