DOI QR코드

DOI QR Code

Protective Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde from Polysiphonia morrowii Harvey against Hydrogen Peroxide-Induced Oxidative Stress In Vitro and In Vivo

  • Cho, Su-Hyeon (Chuncheon Center, Korea Basic Science Institute (KBSI)) ;
  • Heo, Soo-Jin (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science and Technology) ;
  • Yang, Hye-Won (Department of Marine Life Science, Jeju National University) ;
  • Ko, Eun-Yi (Bio Research Center) ;
  • Jung, Myeong Seon (Chuncheon Center, Korea Basic Science Institute (KBSI)) ;
  • Cha, Seon-Heui (Department of Marine Biomedical Science, Hanseo University) ;
  • Ahn, Ginnae (Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University) ;
  • Kim, Kil-Nam (Chuncheon Center, Korea Basic Science Institute (KBSI))
  • Received : 2019.04.29
  • Accepted : 2019.07.02
  • Published : 2019.08.28

Abstract

We investigated the protective effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) from Polysiphonia morrowii Harvey against hydrogen peroxide ($H_2O_2$)-induced apoptosis in Vero cells. BDB exhibited scavenging activity for DPPH, hydroxyl, and alkyl radicals. BDB also inhibited $H_2O_2$-induced lipid peroxidation, cell death, and apoptosis in Vero cells by inhibiting the production of ROS. To evaluate the molecular mechanisms of apoptosis inhibition, the expression of Bax/Bcl-xL and $NF-{\kappa}B$ was assessed by western blot assay. BDB significantly suppressed the cleavage of caspase-9 and PARP and reduced Bax levels in $H_2O_2$-induced Vero cells. Besides, BDB suppressed the phosphorylation of $NF-{\kappa}$B and the translocation of p65 in $H_2O_2$-induced cells. Furthermore, we evaluated the effect of BDB on ROS production, cell death, and lipid peroxidation in an $H_2O_2$-stimulated zebrafish embryo model. Taken together, these results indicated that ROS generation and cell death were significantly inhibited by BDB in zebrafish embryos, thereby proving that BDB exerts excellent antioxidant activity in vitro and in vivo.

Keywords

References

  1. Alfadda A-A, Sallam R-M. 2012. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012: 1-14. https://doi.org/10.1155/2012/936486
  2. Oh Baek S, Kim H, Jeong H, Ju E, Kong CS, Seo Y. 2015. Antioxidant activity of the halophyte ligustrum japonicum. KSBB J. 30: 275-282. https://doi.org/10.7841/ksbbj.2015.30.6.275
  3. Silva F, Marques A, Chaveiro A. 2010. Reactive oxygen species: a double-edged sword in reproduction. Open Vet. Sci. J. 4: 127-133. https://doi.org/10.2174/1874318801004010127
  4. Hong CO, Hong ST, Lee YH, Lee KW. 2012. Protective effects of Plantago asiatica L. extract against ferricnitrilotriacetate (Fe-NTA) induced liver oxidative stress in Wistar rats. FASEB J. 26: 107-113.
  5. Kang MC, Kim EA, Kang SM, Wijesinghe WAJP, Yang X, Kang NL, et al. 2012. Thermostability of a m arine polyphenolic antioxidant dieckol, derived from the brown seaweed Ecklonia cava. Algae. 27: 205-213. https://doi.org/10.4490/algae.2012.27.3.205
  6. Berlett B-S, Stadtman E-R. 1997. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272: 20313-20316. https://doi.org/10.1074/jbc.272.33.20313
  7. Heo SJ, Cha SH, Lee KW, Jeon YJ. 2006. Antioxidant activities of red algae from Jeju Island. Algae 21: 149-156. https://doi.org/10.4490/ALGAE.2006.21.1.149
  8. Kasuga A, Aoyagi Y, Sugahara T. 1988. Antioxidant activities of edible plants. Nippon Shokuhin Kogyo Gakkaishi. 35: 828-834. https://doi.org/10.3136/nskkk1962.35.12_828
  9. Kim JJ, Kim SJ, Kim SH, Park HR, Lee SC. 2005. Antioxidant and anticancer activities of extracts from styela plicata. J. Korean Soc. Food. Sci. Nutr. 34: 937-941. https://doi.org/10.3746/jkfn.2005.34.7.937
  10. Choi W-Y, Lee H. 2014. Enhancement of antioxidant activities of curcuma longa leaves by ultra high pressure extraction. Korean J. Med. Crop. Sci. 22: 121-126. https://doi.org/10.7783/KJMCS.2014.22.2.121
  11. Fujihara M, Nagumo T. 1993. An influence of the structure of alginate on the chemotactic activity of macrophages and the antitumor activity. Carbohydr. Res. 243: 211-216. https://doi.org/10.1016/0008-6215(93)84094-M
  12. M Konig G, Wright A-D, Sticher O, Angerhofer C, M Pezzuto J. 1995. Biological activities of selected marine natural products. Planta. Med. 60: 532-537. https://doi.org/10.1055/s-2006-959565
  13. Cha SH, Ahn GN, Heo SJ, Kim KN, Lee KW, Song CB, et al. 2006. Screening of extracts from marine green and brown algae in Jeju for potential marine angiotensin-I converting enzyme (ACE) inhibitory activity. J. Korean Soc. Food. Sci. Nutr. 35: 307-314. https://doi.org/10.3746/jkfn.2006.35.3.307
  14. Aleksandar R, Stefanie T, Achenbach J, Andreas K, Anna V, Tanja K, et al. 2010. Anionic polysaccharides from phototrophic microorganisms exhibit antiviral activities to vaccinia virus. J. Antivir. Antiretrovir. 2: 51-55.
  15. Tannin-Spitz T, Bergman M, van-Moppes D, Grossman S, Arad S. 2005. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J. Appl. Phycol. 17: 215-222. https://doi.org/10.1007/s10811-005-0679-7
  16. Matsui M, Muizzuddin N, Arad S, Marenus K. 2003. Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl. Biochem. Biotechnol. 104: 13-22. https://doi.org/10.1385/ABAB:104:1:13
  17. Jung WK, Je JY, Kim HJ, Kim SJ. 2002. A novel anticoagulant protein from scapharca broughtonii. J. Biochem. Mol. Biol. 35: 199-205.
  18. Kim SY, Ryel Kim S, Oh MJ, Jung SJ, Kang S. 2011. In vitro antiviral activity of red alga, polysiphonia morrowii extract and its bromophenols against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. J. Microbiol. 49: 102-106. https://doi.org/10.1007/s12275-011-1035-z
  19. Saravanakumar D, Folb P, Campbell B, Smith P. 2008. Antimycobacterial activity of the red alga polysiphonia virgata. Pharm. Biol. 46: 254-260. https://doi.org/10.1080/13880200701739413
  20. Jae Hyun Y, Jing Piao M, Zhang R, Choi Y, Chae S, Won Hyun J. 2012. Photo-protection by 3-bromo-4, 5-dihydroxybenzaldehyde against ultraviolet B-induced oxidative stress in human keratinocytes. 83: 71-78. https://doi.org/10.1016/j.ecoenv.2012.06.010
  21. Piao M-J, Kang K-A, Ryu Y-S, Shilnikova K, Park J-E, Hyun Y-J, et al. 2017. The red algae compound 3-bromo-4,5-dihydroxybenzaldehyde protects human keratinocytes on oxidative stress-related molecules and pathways activated by UVB irradiation. Marine Drugs 15: 268. https://doi.org/10.3390/md15090268
  22. Choi K-Y, Kim J, Lee M-K, Choi YJ, Ye BR, Kim MS, et al. 2017. Tuberatolide B suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling. Marine Drugs 15(3). pii: E55. doi: 10.3390/md15030055.
  23. Mikami D, Kurihara H, Kim S-M, Takahashi K. 2013. Red algal bromophenols as glucose 6-phosphate dehydrogenase inhibitors. Mar. Drugs 11: 4050-4057. https://doi.org/10.3390/md11104050
  24. Ahn GN, Kim KN, Cha SH, Song CB, Lee J, Heo MS, et al. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Eur. Food Res. Technol. 226: 71-79. https://doi.org/10.1007/s00217-006-0510-y
  25. Ko YJ, Ahn G, Ham YM, Song SM, Ko EY, Cho SH, et al. 2017. Anti-inflammatory effect and mechanism of action of Lindera erythrocarpa essential oil in lipopolysaccharidestimulated RAW264.7 cells. EXCLI J. 16: 1103-1113. https://doi.org/10.17179/excli2017-596
  26. Yang HM, Ham YM, Yoon WJ, Roh S-W, Jeon YJ, Oda T, et al. 2012. Quercitrin protects against ultraviolet B-induced cell death in vitro and in an in vivo zebrafish model. J. Photochem. Photobiol. B. 114: 126-131. https://doi.org/10.1016/j.jphotobiol.2012.05.020
  27. Ko EY, Cho SH, Kang K, Kim G, Lee JH, Jeon YJ, et al. 2017. Anti-inflammatory activity of hydrosols from Tetragonia tetragonoides in LPS-induced RAW 264.7 cells. EXCLI J. 16: 521-530. https://doi.org/10.17179/excli2017-121
  28. Aybek H, Aybek Z, Rota S, Sen N, Akbulut M. 2008. The effects of diabetes mellitus, age, and vitamin E on testicular oxidative stress. Fertil. Steril. . 90: 755-760. https://doi.org/10.1016/j.fertnstert.2007.01.101
  29. Li M, Liu Z, Zhuan L, Wang T, Guo S, Wang S, et al. 2012. Effects of apocynin on oxidative stress and expression of apoptosis-related genes in testes of diabetic rats. Mol. Med. Rep. 7: 47-52. https://doi.org/10.3892/mmr.2012.1132
  30. Tang XY, Zhang q, Dai DZ, Ying HJ, Wang QJ, Dai Y. 2008. Effects of strontium fructose 1,6-diphosphate on expression of apoptosis-related genes and oxidative stress in testes of diabetic rats. Int. J. Urol. 15: 251-256. https://doi.org/10.1111/j.1442-2042.2007.01980.x
  31. Niki E. 2008. Lipid peroxidation products as oxidative stress biomarkers. BioFactors 34: 171-180. https://doi.org/10.1002/biof.5520340208
  32. Cidlowski J-A, Schwartzman R-A. 1993. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr. Rev. 14: 133-151. https://doi.org/10.1210/er.14.2.133
  33. Kannan K, Jain S-K. 2000. Oxidative stress and apoptosis. Pathophysiology 7: 153-163. https://doi.org/10.1016/S0928-4680(00)00053-5
  34. Kerr J-F, Wyllie A-H, Currie A-R. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239-257. https://doi.org/10.1038/bjc.1972.33
  35. M, Adams J, Cory S. 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322-1326. https://doi.org/10.1126/science.281.5381.1322
  36. L. Jones N, Islur A, Haq R, Mascarenhas M, Karmali M, Perdue M, et al. 2000. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the BCL-2 family. Am. J. Physiol. Gastrointest. Liver Physiol. 278: G811-819. https://doi.org/10.1152/ajpgi.2000.278.5.G811
  37. Finucane D-M, Bossy-Wetzel E, Waterhouse N-J, Cotter T-G, Green D-R. 1999. Bax-induced caspase activation and apoptosis via cytochromec release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274: 2225-2233. https://doi.org/10.1074/jbc.274.4.2225
  38. Cohen G-M. 1997. Caspases: the executioners of apoptosis. Biochem. J. 326: 1-16. https://doi.org/10.1042/bj3260001
  39. Sun XM, MacFarlane M, Zhuang J, Wolf B-B, Green D-R, Cohen G-M. 1999. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J. Biol. Chem. 274: 5053-5060. https://doi.org/10.1074/jbc.274.8.5053
  40. Ham YM, Yoon WJ, Park SY, Song GP, Jung YH, Jeon YJ, et al. 2012. Quercitrin protects against oxidative stress-induced injury in lung fibroblast cells via up-regulation of Bcl-xL. J. Funct. Foods 4: 253-262. https://doi.org/10.1016/j.jff.2011.12.001
  41. Oliver F-J, de la Rubia G, Rolli V, Ruiz-Ruiz M-C, de Murcia G, Ménissier-de Murcia J. 1998. Importance of poly (ADP-ribose) polymerase and its cleavage in apoptosis Lesson from an uncleavable mutant. J. Biol. Chem. 273: 33533-33539. https://doi.org/10.1074/jbc.273.50.33533
  42. Baeuerle P-A. 1998. Pro-inflammatory signaling: last pieces in the NF-${\kappa}$B puzzle? Curr. Biol. 8: R19-R22. https://doi.org/10.1016/S0960-9822(98)70010-7
  43. Schreck R, Rieber P, Baeuerle P-A. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 10: 2247-2258. https://doi.org/10.1002/j.1460-2075.1991.tb07761.x
  44. CH Chen A, Arany P, Huang YY, M Tomkinson E, Sharma S, B Kharkwal G, et al. 2011. Low-level laser therapy activates NF-${\kappa}$B via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6: e22453. https://doi.org/10.1371/journal.pone.0022453
  45. Morgan M-J, Liu Zg. 2011. Crosstalk of reactive oxygen species and NF-${\kappa}$B signaling. Cell Res. 21: 103-115. https://doi.org/10.1038/cr.2010.178
  46. Schenk H, Klein M, Erdbrugger W, Droge W, Schulze-Osthoff K. 1994. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc. Natl. Acad. Sci. USA 91: 1672-1676. https://doi.org/10.1073/pnas.91.5.1672
  47. Kim EA, Kang MC, Lee JH, Kang N, Lee W, Oh JY, et al. 2015. Protective effect of marine brown algal polyphenols against oxidative stressed zebrafish with high glucose. RSC Adv. 5: 25738-25746. https://doi.org/10.1039/C5RA00338E
  48. Lan CC, Tang R, San Leong I-U, Love D-R. 2009. Quantitative real-time RT-PCR (qRT-PCR) of zebrafish transcripts: optimization of RNA extraction, quality control considerations, and data analysis. Cold Spring Harb. Protoc. 2009(10): pdb. prot5314.
  49. Zou Y, Zhang Y, Han L, He Q, Hou H, Han J, et al. 2017. Oxidative stress-mediated developmental toxicity induced by isoniazide in zebrafish embryos and larvae. J. Appl. Toxicol. 37: 842-852. https://doi.org/10.1002/jat.3432
  50. Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, et al. 2009. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29: 493-502. https://doi.org/10.1128/MCB.01080-08

Cited by

  1. Behavioral and Biochemical Effects of Mukia madrespatana Following Single Immobilization Stress on Rats vol.56, pp.7, 2020, https://doi.org/10.3390/medicina56070350
  2. 5-Bromoprotocatechualdehyde Combats against Palmitate Toxicity by Inhibiting Parkin Degradation and Reducing ROS-Induced Mitochondrial Damage in Pancreatic β-Cells vol.10, pp.2, 2019, https://doi.org/10.3390/antiox10020264
  3. Purification and Structural Characterization of Sulfated Polysaccharides Derived from Brown Algae, Sargassum binderi: Inhibitory Mechanism of iNOS and COX-2 Pathway Interaction vol.10, pp.6, 2021, https://doi.org/10.3390/antiox10060822
  4. Anti-Inflammatory Activity of 4-((1R,2R)-3-Hydroxy-1-(4-hydroxyphenyl)-1-methoxypropan-2-yl)-2-methoxyphenol Isolated from Juglans mandshurica Maxim. in LPS-Stimulated RAW 264.7 Macrophages and Zebraf vol.14, pp.8, 2019, https://doi.org/10.3390/ph14080771