DOI QR코드

DOI QR Code

A Study on the Structural System and Implementation of Cantilever Actuator System

외팔보 엑츄에이터 시스템 구조 및 구현에 관한 연구

  • 윤근영 (호남대학교 전기공학과) ;
  • 백수황 (호남대학교 미래자동차공학부)
  • Received : 2019.07.23
  • Accepted : 2019.08.15
  • Published : 2019.08.31

Abstract

This paper is a study on the structure system and implementation of cantilever actuator for decontamination. There are many kinds of exterior materials that attach to the exterior walls of a building. Glass, in particular, can be contaminated in a short period of time due to external exposure. The pollutants like this damage the appearance of a building. It can also cause health problems for users, and dust attached to solar panels creates problems that greatly reduce the power generation of solar panels. In order to remove such contaminants, professional workers usually remove contaminants attached to the outer walls. However, even with stability, accidents are often caused by a number of unexpected variables that occur in the field. Thus, to overcome these shortcomings, the cantilever actuator structure system was proposed. The system was designed through research. Then, we made a cantilever actuator and checked its operability. Finally, the effectiveness of the cantilever actuator was reviewed.

본 논문은 오염물질 제거를 위한 외팔보 엑츄에이터 시스템 구조 및 구현에 관한 연구이다. 건축물의 외벽에 설치되는 외관 자재들 중 특히 유리의 경우 외부 노출로 인해 단기간에 오염이 된다. 이와 같은 오염물질은 미관상의 퇴색은 물론 사용자에게 보건상의 문제를 야기할 수 있다. 또한 최근 신재생에너지원으로 태양광 패널에 대한 수요가 많이 증가되고 있는데, 이와 같은 태양광 패널의 발전량은 먼지 등에 의해 감소될 수 있으며, 입사량의 감소는 결국 발전량을 저해하는 문제를 야기할 수 있기 때문에 먼지와 같은 오염물질을 주기적으로 제거하는 방안이 필요하다. 일반적으로 전문 작업자가 외벽에 붙은 오염물질을 제거하는 경우가 많은데, 안정성을 확보하였다 하더라도 현장에서 발생하는 여러 가지 돌발 변수로 인해 사고가 종종 발생하고 있다. 따라서 이와 같은 단점을 극복하기 위하여 외팔보 엑츄에이터 구조 시스템을 제안하였다. 외팔보 엑츄에이터에 대한 구조적인 시스템을 구성하고 시제품을 제작하여 동작성을 확인하였다. 최종적으로는 외팔보 엑츄에이터의 오염물질 제거에 대한 효용성을 검토하였다.

Keywords

KCTSAD_2019_v14n4_651_f0001.png 이미지

그림 1. 외팔보 엑츄에이터의 주요 구성 Fig. 1 Configuration of cantilever actuator

KCTSAD_2019_v14n4_651_f0002.png 이미지

그림 2. 엑츄에이터 동작 프로세스 Fig. 2 Operation process of cantilever actuator

KCTSAD_2019_v14n4_651_f0003.png 이미지

그림 3. SMPS의 기능별 구성도 Fig. 3 Block diagram by function about SMPS

KCTSAD_2019_v14n4_651_f0004.png 이미지

그림 4. Ramps 1.4 shield의 주요 구성 및 기능 Fig. 4 Configurations and functions of ramps shield

KCTSAD_2019_v14n4_651_f0005.png 이미지

그림 5. Arduino Mega 2560의 주요 구성 및 기능 Fig. 5 Configurations of Arduino Mega 2560

KCTSAD_2019_v14n4_651_f0006.png 이미지

그림 6. DRV8825의 핀별 주요 기능 Fig. 6 Functions of DRV8825

KCTSAD_2019_v14n4_651_f0007.png 이미지

그림 7. 외팔보 엑츄에이터의 시스템 구성 Fig. 7 System configuration of cantilever actuator

KCTSAD_2019_v14n4_651_f0008.png 이미지

그림 8. 주요 조립 부품 구성도 Fig. 8 Configuration of assembly parts

KCTSAD_2019_v14n4_651_f0009.png 이미지

그림 9. 외팔보 엑츄에이터 시제품 Fig. 9 Prototype of cantilever actuator

KCTSAD_2019_v14n4_651_f0010.png 이미지

그림 10. 외팔보 엑츄에이터 시제품의 구동 시험 Fig. 10 Experiment of prototype

References

  1. T. Mizuno, M. Kawai, F. Tsuchiya, M. Kosugi, and H. Yamada, "An examination for increasing the motor constant of a cylindrical moving magnet-type linear actuator," IEEE Transactions on Magnetics, vol. 41, no. 10, Oct. 2005, pp. 3976-3978. https://doi.org/10.1109/TMAG.2005.855160
  2. K. Guo, S. Fang, H. Yang, H. Lin, and S. L. Ho, "A Novel Linear-Rotary Permanent Magnet Actuator Using Interlaced Poles," IEEE Transactions on Magnetics, vol. 51, no. 11, Nov. 2015, pp. 376-383.
  3. K. Lee and Y. Kim, "A Study on the reduction of cogging force of stationary discontinuous armature Permanent Magnet Linear Synchronous Motor by change in Auxiliary pole," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 6, 2010, pp. 613-619.
  4. J. Rosero, J. Ortega, E. Aldabas and L. Romeral, "Moving Towards a more Electric Aircraft," IEEE A&E System Magazine, vol. 22(3), no. 9, Mar. 2007, pp. 3-9. https://doi.org/10.1109/MAES.2007.4408595
  5. J. Bennet, B. Mecrow, D. Atkinson, and G. Atkinson, "Safety-critical design of electro mechanical actuation system in commercial aircraft," Electric Power Aplications, IET, vol. 5, no. 1, 2011, pp. 37-47. https://doi.org/10.1049/iet-epa.2009.0304
  6. F. R. Rubio, M. G. Ortega, F. Gordillo, and M. Lopez-Martinez, "Applicationofnew control strategyforsuntracking," Energy Conversion and Management, vol. 48, 2007, pp. 2174-2184. https://doi.org/10.1016/j.enconman.2006.12.020
  7. J. Han, S. Bae, and K. Yang, "Design on the Controller of Flexible Robot using Sliding Sector Control," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 5, 2010, pp. 541-546.
  8. D. Dhar and A. Vacca, "A Fluid Structure Interaction-EHD Model of the Lubricating Gaps in External Gear Machines: Formulation and Validation," Tribology International, vol. 62, 2013, pp. 78-90. https://doi.org/10.1016/j.triboint.2013.02.008
  9. Y. Moon, S. Roh, K. Jo, and Y. Bae, "Design of Robot Joint Structure using Multiple Motors," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 2, 2012, pp. 417-423. https://doi.org/10.13067/JKIECS.2012.7.2.417
  10. B. Tomczuk, and M. Sobol, "A Field-network Model of a Linear Oscillating Motor and its Dynamic Characteristics," IEEE Transactions on Magnetics, vol. 41, no. 8, 2005, pp. 2362-2367. https://doi.org/10.1109/TMAG.2005.852941
  11. S. A. Evans, I. R. Smith, and J. G. Kettleborough, "Permanentmagnet Linear Actuator for Static and Reciprocating Shortstroke Electro mechanical Systems," IEEE/ASME Transactions on Mechtronics, vol. 6, no. 1, Mar. 2001, pp. 36-42. https://doi.org/10.1109/3516.914389
  12. M. Utsuno, M. Takai, T. Mizuno, and H. Yamada, "Comparison of the Losses of a moving-magnet Type Linear Oscillatory Actuator under Two Driving Methods," IEEE Transactions on Magnetics, vol. 38, no. 5, Sept. 2002, pp. 3300-3303. https://doi.org/10.1109/TMAG.2002.802291