DOI QR코드

DOI QR Code

A Three-layered Optical Waveguide of Second-order Orbital Angular Momentum Mode Guiding for Photonic Integrated Circuit

3층 구조를 가지는 광 집적회로용 2차 궤도 각운동량 광 도파로

  • Received : 2019.06.19
  • Accepted : 2019.08.15
  • Published : 2019.08.31

Abstract

In this paper, a specifically designed waveguide structure that can carry first, and second-order orbital angular momentum(: OAM) mode is proposed. The proposed optical waveguide consists of three Si stripes embedded in $SiO_2$, which is suitable for implementing on-chip integration and fabrication by standard thin film deposition and etching processes. The second-order OAM mode was generated by combining two eigenmodes, which are calculated by finite difference method(: FDM). The topological charge number of the first, and second-order OAM mode was calculated as l=0.9642 and 1.8766 respectively, which is close to the theoretical value.

본 논문에서는 기존의 l=1 궤도 각운동량 모드에 대해서만 연구가 이루어지던 광 도파로 구조를 개선하여 반도체 박막 공정으로 제작이 가능하고, l=1 및 l=2 궤도 각운동량 모드를 전송할 수 있는 광 집적회로용 실리콘 광 도파로를 유한차분법을 통하여 설계하였다. 설계된 광 도파로는 여러 층의 실리콘과 실리콘 산화막으로 이루어져 있으며, 두 고유 모드의 합성을 통하여 궤도 각운동량을 가지는 모드를 구현한다. 제안된 광 도파로의 2차 궤도 각운동량 모드의 전기장 분포를 통한 궤도 각운동량 계산 결과, 궤도 각운동량 양자수가 1차 및 2차 각각 l= 0.9642, 1.8766으로 이론치에 매우 근접한 값을 보였다.

Keywords

KCTSAD_2019_v14n4_645_f0001.png 이미지

그림 1. HG10, HG01 모드의 합성을 통한 1차 OAM 모드 생성 Fig. 1 Generation of OAMl=1 by combining HG10, and HG01 mode

KCTSAD_2019_v14n4_645_f0002.png 이미지

그림 2. 2차 OAM 모드 생성 개념도 Fig. 2 Conceptual diagram of OAMl=2 mode generation

KCTSAD_2019_v14n4_645_f0003.png 이미지

그림 3. 1, 2차 OAM 모드 전송을 위한 광 도파로 구조 Fig. 3 Waveguide structure for guiding OAMl=1,2 mode

KCTSAD_2019_v14n4_645_f0004.png 이미지

그림 4. 유한차분법으로 계산한 시뮬레이션 결과 (a) HG01모드의 |Ex| 분포 (b) HG10 모드의 |Ex| 분포 (c) HG01 모드의 x성분 위상분포 (d) HG10 모드의 x성분 위상분포 Fig. 4 FDM simulation results of |Ex| distribution of (a) HG01 mode (b) HG10 mode; x-component phase distribution of (c) HG01 mode (d) HG10 mode

KCTSAD_2019_v14n4_645_f0005.png 이미지

그림 5. 유한차분법으로 계산한 시뮬레이션 결과 (a) LGsin2Φ 모드의 |Ex| 분포 (b) LGcos2Φ 모드의 |Ex| 분포 (c) LGsin2Φ 모드의 x성분 위상분포 (d) LGcos2Φ 모드의 x성분 위상분포 Fig. 5 FDM simulation results of |Ex| distribution of (a) LGsin2Φ mode (b) LGcos2Φ mode; x-component phase distribution of (c) LGsin2Φ mode (d) LGcos2Φ mode

KCTSAD_2019_v14n4_645_f0006.png 이미지

그림 6. 최종적으로 생성된 OAM 모드. 1차 OAM의 모드의 (a) |Ex| 분포 (b) x성분 위상분포. 2차 OAM 모드의 (c) |Ex| 분포 (d) x성분 위상분포 Fig. 6 Generated OAM mode (a) |Ex| distribution (b) x-component phase distribution of l=1 OAM mode; (c) |Ex| distribution (d) x-component phase distribution of l=2 OAM mode

KCTSAD_2019_v14n4_645_f0007.png 이미지

그림 7. LP 모드의 빔 웨이스트에 따른 OAM 모드와의 중첩적분 Fig. 7 Overlap integrals between LP mode and OAM mode at different beam waists

References

  1. Z. Zhang, J. Gan, X. Heng, M. Li, J. Li, S. Xu, and Z. Yang, "Low-crosstalk orbital angular momentum fiber coupler design," Optics express, vol. 25, 2017, pp. 11200-11209. https://doi.org/10.1364/OE.25.011200
  2. N. Bozinovic, "Orbital angular momentum in optical fibers," Doctoral dissertation, Boston University, 2013.
  3. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O'Brien, M. G. Thompson, and S. Yu, "Integrated compact optical vortex beam emitters," Science, vol. 338, 2012, pp. 363-366. https://doi.org/10.1126/science.1226528
  4. S. Zheng and J. Wang, "On-chip orbital angular momentum modes generator and (de) multiplexer based on trench silicon waveguides," Optics express, vol. 25, 2017, pp. 18492-18501. https://doi.org/10.1364/OE.25.018492
  5. D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, "Generating in-plane optical orbital angular momentum beams with silicon waveguides," IEEE Photonics J, vol. 5, 2013, pp. 2201206-2201206. https://doi.org/10.1109/JPHOT.2013.2256888
  6. E. Abramochkin and V. Volostnikov, "Beam transformations and nontransformed beams," Opt. Communications, vol. 83, 1991, pp. 123-135. https://doi.org/10.1016/0030-4018(91)90534-K
  7. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review A, vol. 45, 1992, pp. 8185-8190. https://doi.org/10.1103/PhysRevA.45.8185
  8. X. Zeng, Y. Li, L. Feng, S. Wu, C. Yang, W. Li, W. Tong, and J. Wu, "All-fiber orbital angular momentum mode multiplexer based on a mode-selective photonic lantern and a mode polarization controller," Opt. Letter, vol. 43, 2018, pp. 4779-4782. https://doi.org/10.1364/OL.43.004779
  9. A. Liu, C. Zou, X. Ren, Q. Wang, and G. Guo, "On-chip generation and control of the vortex beam," Appl. Phys. Letter, vol. 108, 2016, pp. 181103. https://doi.org/10.1063/1.4948519
  10. Y. Jiang, G. Ren, H. Li, M. Tang, Y. Liu, Y. Wu, W. Jian, and S. Jian, "Linearly polarized orbital angular momentum mode purity measurement in optical fibers," Appl. Opt, vol. 56, 2017, pp. 1990-1995. https://doi.org/10.1364/AO.56.001990
  11. S. M. Barnett, "Optical angular-momentum flux," J. of Optics B: Quantum and Semiclassical Optics, vol. 4, 2001, pp. S7-S16. https://doi.org/10.1088/1464-4266/4/2/361
  12. D. Y. Park, "A Study on the Information Reversibility of Quantum Logic Circuits," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 1, 2017, pp. 189-194. https://doi.org/10.13067/JKIECS.2017.12.1.189
  13. D. Y. Park, "Function Embedding and Projective Measurement of Quantum Gate by Probability Amplitude Switch," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 6, 2017, pp. 1027-1034. https://doi.org/10.13067/JKIECS.2017.12.6.1027