DOI QR코드

DOI QR Code

Estimating the Rumor Source by Rumor Centrality Based Query in Networks

네트워크에서 루머 중심성 기반 질의를 통한 루머의 근원 추정

  • 최재영 (호남대학교 미래자동차공학부)
  • Received : 2018.12.11
  • Accepted : 2019.03.01
  • Published : 2019.07.31

Abstract

In this paper, we consider a rumor source inference problem when sufficiently many nodes heard the rumor in the network. This is an important problem because information spread in networks is fast in many real-world phenomena such as diffusion of a new technology, computer virus/spam infection in the internet, and tweeting and retweeting of popular topics and some of this information is harmful to other nodes. This problem has been much studied, where it has been shown that the detection probability cannot be beyond 31% even for regular trees if the number of infected nodes is sufficiently large. Motivated by this, we study the impact of query that is asking some additional question to the candidate nodes of the source and propose budget assignment algorithms of a query when the network administrator has a finite budget. We perform various simulations for the proposed method and obtain the detection probability that outperforms to the existing prior works.

본 논문에서는 네트워크에서 충분히 많은 노드가 루머를 들었을 때 그 근원이 어디서부터 시작 되었는지를 추론하는 문제를 고려한다. 이것은 신기술의 확산, 인터넷에서의 컴퓨터 바이러스/스팸 감염, 인기 있는 주제의 tweeting 및 retweeting과 같은 많은 실제 환경에서 네트워크의 정보 확산이 빠르게 진행되고, 이 정보 중 일부는 다른 노드에게 악영향을 미칠 수 있기 때문에 매우 중요한 문제이다. 이 문제는 선행연구에 의해 감염된 노드의 수가 충분히 많으면 정규 트리의 경우에도 탐지 확률이 31%를 초과 할 수 없다는 것이 입증되었다. 이를 바탕으로 네트워크에 감염된 후보 노드에게 몇 가지 추가 질의를 하는 방법에 대해 조사하고 네트워크 관리자가 한정된 자산을 가지고 있을 때 각 노드에 대한 질의의 수를 어떻게 분배하는지에 대한 자산 할당 알고리즘을 제안한다. 마지막으로 제안한 방법에 대하여 다양한 시뮬레이션을 수행하였고 기존 선행 연구보다 우수한 성능을 확인하였다.

Keywords

JBCRJM_2019_v8n7_275_f0001.png 이미지

Fig. 1. Rumor Spreading on Social Networks

JBCRJM_2019_v8n7_275_f0002.png 이미지

Fig. 2. Identity/Direction Query

JBCRJM_2019_v8n7_275_f0003.png 이미지

Fig. 3. Batch Query and Interactive Query with Untruthful Answers[3]

JBCRJM_2019_v8n7_275_f0004.png 이미지

Fig. 4. Proposed Budget Assignment Method

JBCRJM_2019_v8n7_275_f0005.png 이미지

Fig. 5. Interactive Query from the Rumor Center

JBCRJM_2019_v8n7_275_f0006.png 이미지

Fig. 6. Facebook Network[2]

JBCRJM_2019_v8n7_275_f0007.png 이미지

Fig. 7. Detection Probability for Batch Query on Regular Tree(degree=3)

JBCRJM_2019_v8n7_275_f0008.png 이미지

Fig. 8. Detection Probability for Interactive Query on Regular Tree (degree=3)

JBCRJM_2019_v8n7_275_f0009.png 이미지

Fig. 9. Detection Probability for Batch Query on ER Random Graph

JBCRJM_2019_v8n7_275_f0010.png 이미지

Fig. 10. Detection Probability for Interactive Query on ER Random Graph

JBCRJM_2019_v8n7_275_f0011.png 이미지

Fig. 11. Detection Probability for Batch Query on Facebook Graph

JBCRJM_2019_v8n7_275_f0012.png 이미지

Fig. 12. Detection Probability for Interactive Query on Facebook Graph

Table 1. Taxonomy of Rumor Source Detection Problems

JBCRJM_2019_v8n7_275_t0001.png 이미지

Table 2. Detection Probabilities for Batch Query using Various (p,q)(K=500)(H: Homogeneous, P: Proposed)

JBCRJM_2019_v8n7_275_t0002.png 이미지

Table 3. Detection Probabilities for Interactive Query using Various (p,q)(K=500)(H: Homogeneous, P: Proposed)

JBCRJM_2019_v8n7_275_t0003.png 이미지

References

  1. D. Shah and T. Zaman. Detecting Sources of Computer Viruses in Networks: Theory and Experiment. In Proceedings of ACM SIGMETRICS, 2010.
  2. J. Choi, S. Moon, J. Woo, K. Son, J. Shin, and Y. Yi. Rumor, "Source Detection under Querying with Untruthful Answers. In Proceedings of IEEE INFOCOM, 2017.
  3. J. Choi and Y. Yi, "Necessary and Sufficient Budgets in Information Source Finding with Querying: Adaptivity Gap," in Proceedings of IEEE ISIT, 2018.
  4. W. Dong, W. Zhang, and C. W. Tan, "Rooting Out the Rumor Culprit from Suspects." in Proceedings of IEEE International Symposium on Information Theory (ISIT), 2013.
  5. Z. Wang, W. Dong, W. Zhang, and C. W. Tan, "Rumor Source Detection with Multiple Observations: Fundamental Limits and Algorithms," in Proceedings, ACM SIGMETRICS, 2014.
  6. J. Choi, S. Moon, J. Shin, and Y. Yi, "Estimating the Rumor Source with Anti-Rumor in Social Networks," in Proceedings of IEEE ICNP Workshop on Machine Learning, 2016.
  7. G. Fanti, P. Kairouz, S. Oh, and P. Viswanath, "Spy vs. Spy: Rumor Source bfuscation," in Proceedings of ACM SIGMETRICS, 2015.
  8. G. Fanti, P. Kairouz, S. Oh, K. Ramchandran, and P. Viswanath, "Rumor ource Obfuscation on Irregular Trees," in Proceedings of ACM SIGMETRICS, 2016.
  9. G. Fanti, P. Kairouz, S. Oh, K. Ramchandran, and P. Viswanath, "Metadata-conscious Anonymous Messaging," in Proceedings of ICML, 2016.
  10. W. Luo, W. P. Tay and M. Leng, Infection Sprading and Source Identification: A Hide and Seek Game. IEEE Transaction on Signal Processing, Vol. 64, No. 16, AUGUST 15, 2016.
  11. J. Jaing, S. Wen, S. Yu, Y. Xiang, and W. Zhou, "K-Center: An Approach on the Multi-Source Identification of Information Diffusion," IEEE Transactions on Information Forensics and Security, Vol.10, pp.2616-2626, 2015. https://doi.org/10.1109/TIFS.2015.2469256
  12. F. Ji and W. P. Tay, "An Algorithmic Framework for Estimating Rumor Sources With Different Start Times," IEEE Transactions on Signal Processing, Vol.65, pp. 2517-2530, 2017. https://doi.org/10.1109/TSP.2017.2659643
  13. Z. Wang, C. Wang, J. Pei, and X. Ye, "Multiple Source Detection without Knowing the Underlying Propagation Model," in Proceedings of AAAI, 2017.
  14. W. Luo, W. P. Tay, and M. Leng, "How to Identify an Infection Source With Limited Observations," IEEE Journal of Selected Topics in Signal Processing, Voi.8, No.4, pp. 586-597, 2014. https://doi.org/10.1109/JSTSP.2014.2315533
  15. K. Zhu and L. Ying, "Information Source Detection in Networks: Possibility and Impossibility Results," IEEE INFOCOM, 2017.
  16. B. Chang, F. Zhu, E. Chen, and Q. Liu, "Information source detection via Maximum A Postreia Estimation,?" in Proceedings of IEEE ICDM, 2015.
  17. J. Leskovec and J. McAuley, "Learning to Discover Social Circles in Ego Networks," in Proceedings of NIPS, 2012.